Adaptive Linear Span Network for Object Skeleton Detection
Conventional networks for object skeleton detection are usually hand-crafted. Despite the effectiveness, hand-crafted network architectures lack the theoretical basis and require intensive prior knowledge to implement representation complementarity for objects/parts in different granularity. In this...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2021, Vol.30, p.5096-5108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5108 |
---|---|
container_issue | |
container_start_page | 5096 |
container_title | IEEE transactions on image processing |
container_volume | 30 |
creator | Liu, Chang Tian, Yunjie Chen, Zhiwen Jiao, Jianbin Ye, Qixiang |
description | Conventional networks for object skeleton detection are usually hand-crafted. Despite the effectiveness, hand-crafted network architectures lack the theoretical basis and require intensive prior knowledge to implement representation complementarity for objects/parts in different granularity. In this paper, we propose an adaptive linear span network (AdaLSN), driven by neural architecture search (NAS), to automatically configure and integrate scale-aware features for object skeleton detection. AdaLSN is formulated with the theory of linear span, which provides one of the earliest explanations for multi-scale deep feature fusion. AdaLSN is materialized by defining a mixed unit-pyramid search space, which goes beyond many existing search spaces using unit-level or pyramid-level features. Within the mixed space, we apply genetic architecture search to jointly optimize unit-level operations and pyramid-level connections for adaptive feature space expansion. AdaLSN substantiates its versatility by achieving significantly higher accuracy and latency trade-off compared with the state-of-the-arts. It also demonstrates general applicability to image-to-mask tasks such as edge detection and road extraction. Code is available at https://github.com/sunsmarterjie/SDL-Skeletongithub.com/sunsmarterjie/SDL-Skeleton . |
doi_str_mv | 10.1109/TIP.2021.3078079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9432856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9432856</ieee_id><sourcerecordid>2530111174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-23255aed0c4c330d8332774eb96cfc2ad7d2707a50a0777903ce415920d55d263</originalsourceid><addsrcrecordid>eNqNkE1rGzEQhkVoaL56DxTKQi6Fss5oJK1WuQU3bQMmCSQ5L7J2FtaxV66kTei_r4ydFHrKXGYGnncYHsZOOUw4B3P-cH03QUA-EaBr0GaPHXIjeQkg8UOeQelSc2kO2FGMCwAuFa8-sgMhjDE1wiG7uGztOvXPVMz6gWwo7td2KG4ovfjwVHQ-FLfzBblU3D_RkpIfiu-U8t774YTtd3YZ6dOuH7PHH1cP01_l7Pbn9fRyVjohdSpRoFKWWnDSCQFtLQRqLWluKtc5tK1uUYO2CixorQ0IR5Irg9Aq1WIljtnX7d118L9HiqlZ9dHRcmkH8mNsUGFd5wBgRs_-Qxd-DEP-LlMCeC4tMwVbygUfY6CuWYd-ZcOfhkOz8dpkr83Ga7PzmiNfdofH-Yrat8CryAzUW-CF5r6LrqfB0RsGAJVCnb_ME-C0T3ZjcOrHIeXot_dHM_15S_dE_ygjBdaqEn8BFaeZXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530111174</pqid></control><display><type>article</type><title>Adaptive Linear Span Network for Object Skeleton Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Chang ; Tian, Yunjie ; Chen, Zhiwen ; Jiao, Jianbin ; Ye, Qixiang</creator><creatorcontrib>Liu, Chang ; Tian, Yunjie ; Chen, Zhiwen ; Jiao, Jianbin ; Ye, Qixiang</creatorcontrib><description>Conventional networks for object skeleton detection are usually hand-crafted. Despite the effectiveness, hand-crafted network architectures lack the theoretical basis and require intensive prior knowledge to implement representation complementarity for objects/parts in different granularity. In this paper, we propose an adaptive linear span network (AdaLSN), driven by neural architecture search (NAS), to automatically configure and integrate scale-aware features for object skeleton detection. AdaLSN is formulated with the theory of linear span, which provides one of the earliest explanations for multi-scale deep feature fusion. AdaLSN is materialized by defining a mixed unit-pyramid search space, which goes beyond many existing search spaces using unit-level or pyramid-level features. Within the mixed space, we apply genetic architecture search to jointly optimize unit-level operations and pyramid-level connections for adaptive feature space expansion. AdaLSN substantiates its versatility by achieving significantly higher accuracy and latency trade-off compared with the state-of-the-arts. It also demonstrates general applicability to image-to-mask tasks such as edge detection and road extraction. Code is available at https://github.com/sunsmarterjie/SDL-Skeletongithub.com/sunsmarterjie/SDL-Skeleton .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3078079</identifier><identifier>PMID: 33999820</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Computer architecture ; Computer Science ; Computer Science, Artificial Intelligence ; Edge detection ; Engineering ; Engineering, Electrical & Electronic ; Feature extraction ; genetic algorithm ; Knowledge representation ; linear span network ; Network architecture ; Network latency ; neural architecture search ; Science & Technology ; Search problems ; Searching ; Semantics ; Skeleton ; Skeleton detection ; Technology ; Transforms</subject><ispartof>IEEE transactions on image processing, 2021, Vol.30, p.5096-5108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652781500002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c347t-23255aed0c4c330d8332774eb96cfc2ad7d2707a50a0777903ce415920d55d263</citedby><cites>FETCH-LOGICAL-c347t-23255aed0c4c330d8332774eb96cfc2ad7d2707a50a0777903ce415920d55d263</cites><orcidid>0000-0002-8302-8839 ; 0000-0003-1215-6259 ; 0000-0001-6747-0646 ; 0000-0003-0454-3929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9432856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9432856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33999820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Tian, Yunjie</creatorcontrib><creatorcontrib>Chen, Zhiwen</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><title>Adaptive Linear Span Network for Object Skeleton Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE T IMAGE PROCESS</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Conventional networks for object skeleton detection are usually hand-crafted. Despite the effectiveness, hand-crafted network architectures lack the theoretical basis and require intensive prior knowledge to implement representation complementarity for objects/parts in different granularity. In this paper, we propose an adaptive linear span network (AdaLSN), driven by neural architecture search (NAS), to automatically configure and integrate scale-aware features for object skeleton detection. AdaLSN is formulated with the theory of linear span, which provides one of the earliest explanations for multi-scale deep feature fusion. AdaLSN is materialized by defining a mixed unit-pyramid search space, which goes beyond many existing search spaces using unit-level or pyramid-level features. Within the mixed space, we apply genetic architecture search to jointly optimize unit-level operations and pyramid-level connections for adaptive feature space expansion. AdaLSN substantiates its versatility by achieving significantly higher accuracy and latency trade-off compared with the state-of-the-arts. It also demonstrates general applicability to image-to-mask tasks such as edge detection and road extraction. Code is available at https://github.com/sunsmarterjie/SDL-Skeletongithub.com/sunsmarterjie/SDL-Skeleton .</description><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Edge detection</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Feature extraction</subject><subject>genetic algorithm</subject><subject>Knowledge representation</subject><subject>linear span network</subject><subject>Network architecture</subject><subject>Network latency</subject><subject>neural architecture search</subject><subject>Science & Technology</subject><subject>Search problems</subject><subject>Searching</subject><subject>Semantics</subject><subject>Skeleton</subject><subject>Skeleton detection</subject><subject>Technology</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkE1rGzEQhkVoaL56DxTKQi6Fss5oJK1WuQU3bQMmCSQ5L7J2FtaxV66kTei_r4ydFHrKXGYGnncYHsZOOUw4B3P-cH03QUA-EaBr0GaPHXIjeQkg8UOeQelSc2kO2FGMCwAuFa8-sgMhjDE1wiG7uGztOvXPVMz6gWwo7td2KG4ovfjwVHQ-FLfzBblU3D_RkpIfiu-U8t774YTtd3YZ6dOuH7PHH1cP01_l7Pbn9fRyVjohdSpRoFKWWnDSCQFtLQRqLWluKtc5tK1uUYO2CixorQ0IR5Irg9Aq1WIljtnX7d118L9HiqlZ9dHRcmkH8mNsUGFd5wBgRs_-Qxd-DEP-LlMCeC4tMwVbygUfY6CuWYd-ZcOfhkOz8dpkr83Ga7PzmiNfdofH-Yrat8CryAzUW-CF5r6LrqfB0RsGAJVCnb_ME-C0T3ZjcOrHIeXot_dHM_15S_dE_ygjBdaqEn8BFaeZXA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Chang</creator><creator>Tian, Yunjie</creator><creator>Chen, Zhiwen</creator><creator>Jiao, Jianbin</creator><creator>Ye, Qixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8302-8839</orcidid><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0001-6747-0646</orcidid><orcidid>https://orcid.org/0000-0003-0454-3929</orcidid></search><sort><creationdate>2021</creationdate><title>Adaptive Linear Span Network for Object Skeleton Detection</title><author>Liu, Chang ; Tian, Yunjie ; Chen, Zhiwen ; Jiao, Jianbin ; Ye, Qixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-23255aed0c4c330d8332774eb96cfc2ad7d2707a50a0777903ce415920d55d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Edge detection</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Feature extraction</topic><topic>genetic algorithm</topic><topic>Knowledge representation</topic><topic>linear span network</topic><topic>Network architecture</topic><topic>Network latency</topic><topic>neural architecture search</topic><topic>Science & Technology</topic><topic>Search problems</topic><topic>Searching</topic><topic>Semantics</topic><topic>Skeleton</topic><topic>Skeleton detection</topic><topic>Technology</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Tian, Yunjie</creatorcontrib><creatorcontrib>Chen, Zhiwen</creatorcontrib><creatorcontrib>Jiao, Jianbin</creatorcontrib><creatorcontrib>Ye, Qixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Chang</au><au>Tian, Yunjie</au><au>Chen, Zhiwen</au><au>Jiao, Jianbin</au><au>Ye, Qixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Linear Span Network for Object Skeleton Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><stitle>IEEE T IMAGE PROCESS</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2021</date><risdate>2021</risdate><volume>30</volume><spage>5096</spage><epage>5108</epage><pages>5096-5108</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Conventional networks for object skeleton detection are usually hand-crafted. Despite the effectiveness, hand-crafted network architectures lack the theoretical basis and require intensive prior knowledge to implement representation complementarity for objects/parts in different granularity. In this paper, we propose an adaptive linear span network (AdaLSN), driven by neural architecture search (NAS), to automatically configure and integrate scale-aware features for object skeleton detection. AdaLSN is formulated with the theory of linear span, which provides one of the earliest explanations for multi-scale deep feature fusion. AdaLSN is materialized by defining a mixed unit-pyramid search space, which goes beyond many existing search spaces using unit-level or pyramid-level features. Within the mixed space, we apply genetic architecture search to jointly optimize unit-level operations and pyramid-level connections for adaptive feature space expansion. AdaLSN substantiates its versatility by achieving significantly higher accuracy and latency trade-off compared with the state-of-the-arts. It also demonstrates general applicability to image-to-mask tasks such as edge detection and road extraction. Code is available at https://github.com/sunsmarterjie/SDL-Skeletongithub.com/sunsmarterjie/SDL-Skeleton .</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>33999820</pmid><doi>10.1109/TIP.2021.3078079</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8302-8839</orcidid><orcidid>https://orcid.org/0000-0003-1215-6259</orcidid><orcidid>https://orcid.org/0000-0001-6747-0646</orcidid><orcidid>https://orcid.org/0000-0003-0454-3929</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2021, Vol.30, p.5096-5108 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_9432856 |
source | IEEE Electronic Library (IEL) |
subjects | Computer architecture Computer Science Computer Science, Artificial Intelligence Edge detection Engineering Engineering, Electrical & Electronic Feature extraction genetic algorithm Knowledge representation linear span network Network architecture Network latency neural architecture search Science & Technology Search problems Searching Semantics Skeleton Skeleton detection Technology Transforms |
title | Adaptive Linear Span Network for Object Skeleton Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Linear%20Span%20Network%20for%20Object%20Skeleton%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Chang&rft.date=2021&rft.volume=30&rft.spage=5096&rft.epage=5108&rft.pages=5096-5108&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3078079&rft_dat=%3Cproquest_RIE%3E2530111174%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530111174&rft_id=info:pmid/33999820&rft_ieee_id=9432856&rfr_iscdi=true |