Non-Uniformity Correction of Infrared Images Based on Improved CNN With Long-Short Connections

Non-uniformity is a common phenomenon in infrared imaging system, which seriously affects imaging quality. In view of the problems of existing non-uniformity correction of infrared images, such as loss of image details and blurred edge of image, an improved non-uniformity correction method of infrar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2021-06, Vol.13 (3), p.1-13
Hauptverfasser: Li, Timing, Zhao, Yiqiang, Li, Yao, Zhou, Guoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 3
container_start_page 1
container_title IEEE photonics journal
container_volume 13
creator Li, Timing
Zhao, Yiqiang
Li, Yao
Zhou, Guoqing
description Non-uniformity is a common phenomenon in infrared imaging system, which seriously affects imaging quality. In view of the problems of existing non-uniformity correction of infrared images, such as loss of image details and blurred edge of image, an improved non-uniformity correction method of infrared images based on convolution neural network using long-short connections (LSC-CNN) is proposed. The proposed method designs a long-short connection residual network structure suitable for non-uniformity correction of infrared image.The network depth is increased to fully learn the noise by short connections, image sizes are adjusted to reduce the number of parameters, the long connection is used to solve the problem of image information loss caused by transposed convolution, and a multiply operation is carried out to enhance the contrast of corrected images. Besides, batch normalization is utilized to improve the training speed. The experimental results show that LSC-CNN has excellent performance in non-uniformity correction of infrared images whether qualitative evaluation or quantitative evaluation. LSC-CNN is especially effective in image detail preservation and image edge protection whose average PSNR exceeds 37.5 dB and the average SSIM is greater than 0.98.
doi_str_mv 10.1109/JPHOT.2021.3080834
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9432740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9432740</ieee_id><doaj_id>oai_doaj_org_article_6bb95a5657f14712bc95032caa55b87a</doaj_id><sourcerecordid>2536030843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-77b644730f689419665324cc405d97d59589179f97ae6858e86568130cf75a463</originalsourceid><addsrcrecordid>eNpNkVtPwyAYhhujiTr9A3rTxOtOKHwcLnXxULNsJm7xTkIpzC6uKHQm_nvRmsUrPuB7Hw5Plp1hNMYYycuHx_v5YlyiEo8JEkgQupcdYUlJgRjA_r_6MDuOcY0QkxjkUfYy812x7Frnw6btv_KJD8GavvVd7l1edS7oYJu82uiVjfm1jmmS9qrNe_CfqZ7MZvlz27_mU9-tiqdXH_rE6LqBEU-yA6ffoj39G0fZ8vZmMbkvpvO7anI1LQzl0Bec14xSTpBjQlIsGQNSUmMogkbyBiQIibl0kmvLBAgrGDCBCTKOg6aMjLJq4DZer9V7aDc6fCmvW_W74MNK6dC35s0qVtcSNDDgDlOOy9pIQKQ0WgPUguvEuhhY6YkfWxt7tfbb0KXrqxIIQ-mDKUld5dBlgo8xWLc7FSP140T9OlE_TtSfkxQ6H0KttXYXSGpKThH5BihZhSg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536030843</pqid></control><display><type>article</type><title>Non-Uniformity Correction of Infrared Images Based on Improved CNN With Long-Short Connections</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Timing ; Zhao, Yiqiang ; Li, Yao ; Zhou, Guoqing</creator><creatorcontrib>Li, Timing ; Zhao, Yiqiang ; Li, Yao ; Zhou, Guoqing</creatorcontrib><description>Non-uniformity is a common phenomenon in infrared imaging system, which seriously affects imaging quality. In view of the problems of existing non-uniformity correction of infrared images, such as loss of image details and blurred edge of image, an improved non-uniformity correction method of infrared images based on convolution neural network using long-short connections (LSC-CNN) is proposed. The proposed method designs a long-short connection residual network structure suitable for non-uniformity correction of infrared image.The network depth is increased to fully learn the noise by short connections, image sizes are adjusted to reduce the number of parameters, the long connection is used to solve the problem of image information loss caused by transposed convolution, and a multiply operation is carried out to enhance the contrast of corrected images. Besides, batch normalization is utilized to improve the training speed. The experimental results show that LSC-CNN has excellent performance in non-uniformity correction of infrared images whether qualitative evaluation or quantitative evaluation. LSC-CNN is especially effective in image detail preservation and image edge protection whose average PSNR exceeds 37.5 dB and the average SSIM is greater than 0.98.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2021.3080834</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; combination of long and short connections ; Convolution ; Feature extraction ; Image contrast ; Image edge detection ; Image enhancement ; improved neural network ; Infrared image ; Infrared imagery ; Infrared imaging ; Infrared imaging systems ; Kernel ; Mathematical model ; Neural networks ; Noise measurement ; non-uniformity correction ; Nonuniformity</subject><ispartof>IEEE photonics journal, 2021-06, Vol.13 (3), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-77b644730f689419665324cc405d97d59589179f97ae6858e86568130cf75a463</citedby><cites>FETCH-LOGICAL-c475t-77b644730f689419665324cc405d97d59589179f97ae6858e86568130cf75a463</cites><orcidid>0000-0002-7014-8145 ; 0000-0003-4928-895X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9432740$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Li, Timing</creatorcontrib><creatorcontrib>Zhao, Yiqiang</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Zhou, Guoqing</creatorcontrib><title>Non-Uniformity Correction of Infrared Images Based on Improved CNN With Long-Short Connections</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Non-uniformity is a common phenomenon in infrared imaging system, which seriously affects imaging quality. In view of the problems of existing non-uniformity correction of infrared images, such as loss of image details and blurred edge of image, an improved non-uniformity correction method of infrared images based on convolution neural network using long-short connections (LSC-CNN) is proposed. The proposed method designs a long-short connection residual network structure suitable for non-uniformity correction of infrared image.The network depth is increased to fully learn the noise by short connections, image sizes are adjusted to reduce the number of parameters, the long connection is used to solve the problem of image information loss caused by transposed convolution, and a multiply operation is carried out to enhance the contrast of corrected images. Besides, batch normalization is utilized to improve the training speed. The experimental results show that LSC-CNN has excellent performance in non-uniformity correction of infrared images whether qualitative evaluation or quantitative evaluation. LSC-CNN is especially effective in image detail preservation and image edge protection whose average PSNR exceeds 37.5 dB and the average SSIM is greater than 0.98.</description><subject>Artificial neural networks</subject><subject>combination of long and short connections</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>improved neural network</subject><subject>Infrared image</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared imaging systems</subject><subject>Kernel</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>non-uniformity correction</subject><subject>Nonuniformity</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtPwyAYhhujiTr9A3rTxOtOKHwcLnXxULNsJm7xTkIpzC6uKHQm_nvRmsUrPuB7Hw5Plp1hNMYYycuHx_v5YlyiEo8JEkgQupcdYUlJgRjA_r_6MDuOcY0QkxjkUfYy812x7Frnw6btv_KJD8GavvVd7l1edS7oYJu82uiVjfm1jmmS9qrNe_CfqZ7MZvlz27_mU9-tiqdXH_rE6LqBEU-yA6ffoj39G0fZ8vZmMbkvpvO7anI1LQzl0Bec14xSTpBjQlIsGQNSUmMogkbyBiQIibl0kmvLBAgrGDCBCTKOg6aMjLJq4DZer9V7aDc6fCmvW_W74MNK6dC35s0qVtcSNDDgDlOOy9pIQKQ0WgPUguvEuhhY6YkfWxt7tfbb0KXrqxIIQ-mDKUld5dBlgo8xWLc7FSP140T9OlE_TtSfkxQ6H0KttXYXSGpKThH5BihZhSg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Li, Timing</creator><creator>Zhao, Yiqiang</creator><creator>Li, Yao</creator><creator>Zhou, Guoqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7014-8145</orcidid><orcidid>https://orcid.org/0000-0003-4928-895X</orcidid></search><sort><creationdate>20210601</creationdate><title>Non-Uniformity Correction of Infrared Images Based on Improved CNN With Long-Short Connections</title><author>Li, Timing ; Zhao, Yiqiang ; Li, Yao ; Zhou, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-77b644730f689419665324cc405d97d59589179f97ae6858e86568130cf75a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>combination of long and short connections</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>improved neural network</topic><topic>Infrared image</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared imaging systems</topic><topic>Kernel</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>non-uniformity correction</topic><topic>Nonuniformity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Timing</creatorcontrib><creatorcontrib>Zhao, Yiqiang</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><creatorcontrib>Zhou, Guoqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Timing</au><au>Zhao, Yiqiang</au><au>Li, Yao</au><au>Zhou, Guoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Uniformity Correction of Infrared Images Based on Improved CNN With Long-Short Connections</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Non-uniformity is a common phenomenon in infrared imaging system, which seriously affects imaging quality. In view of the problems of existing non-uniformity correction of infrared images, such as loss of image details and blurred edge of image, an improved non-uniformity correction method of infrared images based on convolution neural network using long-short connections (LSC-CNN) is proposed. The proposed method designs a long-short connection residual network structure suitable for non-uniformity correction of infrared image.The network depth is increased to fully learn the noise by short connections, image sizes are adjusted to reduce the number of parameters, the long connection is used to solve the problem of image information loss caused by transposed convolution, and a multiply operation is carried out to enhance the contrast of corrected images. Besides, batch normalization is utilized to improve the training speed. The experimental results show that LSC-CNN has excellent performance in non-uniformity correction of infrared images whether qualitative evaluation or quantitative evaluation. LSC-CNN is especially effective in image detail preservation and image edge protection whose average PSNR exceeds 37.5 dB and the average SSIM is greater than 0.98.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2021.3080834</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7014-8145</orcidid><orcidid>https://orcid.org/0000-0003-4928-895X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2021-06, Vol.13 (3), p.1-13
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_ieee_primary_9432740
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
combination of long and short connections
Convolution
Feature extraction
Image contrast
Image edge detection
Image enhancement
improved neural network
Infrared image
Infrared imagery
Infrared imaging
Infrared imaging systems
Kernel
Mathematical model
Neural networks
Noise measurement
non-uniformity correction
Nonuniformity
title Non-Uniformity Correction of Infrared Images Based on Improved CNN With Long-Short Connections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Uniformity%20Correction%20of%20Infrared%20Images%20Based%20on%20Improved%20CNN%20With%20Long-Short%20Connections&rft.jtitle=IEEE%20photonics%20journal&rft.au=Li,%20Timing&rft.date=2021-06-01&rft.volume=13&rft.issue=3&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2021.3080834&rft_dat=%3Cproquest_ieee_%3E2536030843%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536030843&rft_id=info:pmid/&rft_ieee_id=9432740&rft_doaj_id=oai_doaj_org_article_6bb95a5657f14712bc95032caa55b87a&rfr_iscdi=true