A Novel Approach for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal Sensing Data
Upper limb rehabilitation is an effective methodology to restore and improve the functionality of patients after multiple medical events, such as strokes, arthroscopic surgery, and breast cancer surgery. High-quality rehabilitation training can promote the independent living of patients, thus enhanc...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.77138-77148 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77148 |
---|---|
container_issue | |
container_start_page | 77138 |
container_title | IEEE access |
container_volume | 9 |
creator | Miao, Sheng Dang, Yukun Zhu, Qixiu Li, Sudong Shorfuzzaman, Mohammad Lv, Haibin |
description | Upper limb rehabilitation is an effective methodology to restore and improve the functionality of patients after multiple medical events, such as strokes, arthroscopic surgery, and breast cancer surgery. High-quality rehabilitation training can promote the independent living of patients, thus enhancing the quality of life and reducing the financial burden. Traditional training sessions have some limitations, including high expenses, low compliance, and inaccurate evaluations. This paper presents a novel approach to assist healthcare professionals in assessing the functionality of upper limbs based on multimodal sensing data and deep learning algorithms. There are five different types of sensing data employed in the proposed approach: accelerometer, angular velocity, device orientation, RGB image, and depth image data. In order to assess the accuracy of training actions, the presented approach applies two machine learning algorithms, which are the dynamic time warping-K-nearest neighbor (DTW-KNN) algorithm and the long short-term memory (LSTM) neural network. The experimental results show that multimodal sensing data can improve the modeling accuracy compared with unimodal sensing data. The LSTM model can achieve better accuracy (96.3%) than DTW-KNN (74.07%) with multimodal sensing data. Moreover, LSTM performs extremely efficiently in modeling high-dimensional sensing data. |
doi_str_mv | 10.1109/ACCESS.2021.3080592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9431090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9431090</ieee_id><doaj_id>oai_doaj_org_article_2a6a2bbbeacd4879aa606afada9949be</doaj_id><sourcerecordid>2536031100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3b85116cf1055440c904a04c23b9c7e27fff5f339b85fcd4a2df4ca88cd722f33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuFji3OJXHj6G8pQKHApna-OswSWNg50i8fe4BCH24tV4ZlaaybIzRueMUXVRLxbXq9WcU87mglY0V3wvO-KsUDORi2L_336Ynca4pmmqBOXlUfZek0f_iR2phyF4MG_E-kBehgEDWbpNQ262vRmd76Fz4xepY8QYN9iP5BIitsT35ApxIEuE0Lv-lUDfkodtN7qNb6EjK-zjDr6CEU6yAwtdxNPf9zh7ubl-XtzNlk-394t6OTOSVuNMNFXOWGEso3kuJTWKSqDScNEoUyIvrbW5FUIlnjWtBN5aaaCqTFtynj6Os_vJt_Ww1kNwGwhf2oPTP4APrxrC6EyHmkMBvGkahGRUlQqgoAVYaEEpqRpMXueTV0rnY4tx1Gu_DSmNqHkKlIpUAU0sMbFM8DEGtH9XGdW7kvRUkt6VpH9LSqqzSeUQ8U-hpEgCKr4BcjqN-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536031100</pqid></control><display><type>article</type><title>A Novel Approach for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal Sensing Data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Miao, Sheng ; Dang, Yukun ; Zhu, Qixiu ; Li, Sudong ; Shorfuzzaman, Mohammad ; Lv, Haibin</creator><creatorcontrib>Miao, Sheng ; Dang, Yukun ; Zhu, Qixiu ; Li, Sudong ; Shorfuzzaman, Mohammad ; Lv, Haibin</creatorcontrib><description>Upper limb rehabilitation is an effective methodology to restore and improve the functionality of patients after multiple medical events, such as strokes, arthroscopic surgery, and breast cancer surgery. High-quality rehabilitation training can promote the independent living of patients, thus enhancing the quality of life and reducing the financial burden. Traditional training sessions have some limitations, including high expenses, low compliance, and inaccurate evaluations. This paper presents a novel approach to assist healthcare professionals in assessing the functionality of upper limbs based on multimodal sensing data and deep learning algorithms. There are five different types of sensing data employed in the proposed approach: accelerometer, angular velocity, device orientation, RGB image, and depth image data. In order to assess the accuracy of training actions, the presented approach applies two machine learning algorithms, which are the dynamic time warping-K-nearest neighbor (DTW-KNN) algorithm and the long short-term memory (LSTM) neural network. The experimental results show that multimodal sensing data can improve the modeling accuracy compared with unimodal sensing data. The LSTM model can achieve better accuracy (96.3%) than DTW-KNN (74.07%) with multimodal sensing data. Moreover, LSTM performs extremely efficiently in modeling high-dimensional sensing data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3080592</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerometers ; Accuracy ; Algorithms ; Angular velocity ; Deep learning ; healthcare ; LSTM neural network ; Machine learning ; Medical imaging ; Medical services ; Model accuracy ; Modelling ; multi-modal sensing data ; Multimodal sensors ; Neural networks ; Rehabilitation ; Sensor systems ; Sensors ; Stroke (medical condition) ; Surgery ; Training ; Upper limb functionality</subject><ispartof>IEEE access, 2021, Vol.9, p.77138-77148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3b85116cf1055440c904a04c23b9c7e27fff5f339b85fcd4a2df4ca88cd722f33</citedby><cites>FETCH-LOGICAL-c408t-3b85116cf1055440c904a04c23b9c7e27fff5f339b85fcd4a2df4ca88cd722f33</cites><orcidid>0000-0001-6176-3624 ; 0000-0002-8050-8431 ; 0000-0003-1059-4765 ; 0000-0002-7751-5526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9431090$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Miao, Sheng</creatorcontrib><creatorcontrib>Dang, Yukun</creatorcontrib><creatorcontrib>Zhu, Qixiu</creatorcontrib><creatorcontrib>Li, Sudong</creatorcontrib><creatorcontrib>Shorfuzzaman, Mohammad</creatorcontrib><creatorcontrib>Lv, Haibin</creatorcontrib><title>A Novel Approach for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal Sensing Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>Upper limb rehabilitation is an effective methodology to restore and improve the functionality of patients after multiple medical events, such as strokes, arthroscopic surgery, and breast cancer surgery. High-quality rehabilitation training can promote the independent living of patients, thus enhancing the quality of life and reducing the financial burden. Traditional training sessions have some limitations, including high expenses, low compliance, and inaccurate evaluations. This paper presents a novel approach to assist healthcare professionals in assessing the functionality of upper limbs based on multimodal sensing data and deep learning algorithms. There are five different types of sensing data employed in the proposed approach: accelerometer, angular velocity, device orientation, RGB image, and depth image data. In order to assess the accuracy of training actions, the presented approach applies two machine learning algorithms, which are the dynamic time warping-K-nearest neighbor (DTW-KNN) algorithm and the long short-term memory (LSTM) neural network. The experimental results show that multimodal sensing data can improve the modeling accuracy compared with unimodal sensing data. The LSTM model can achieve better accuracy (96.3%) than DTW-KNN (74.07%) with multimodal sensing data. Moreover, LSTM performs extremely efficiently in modeling high-dimensional sensing data.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Deep learning</subject><subject>healthcare</subject><subject>LSTM neural network</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medical services</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>multi-modal sensing data</subject><subject>Multimodal sensors</subject><subject>Neural networks</subject><subject>Rehabilitation</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Stroke (medical condition)</subject><subject>Surgery</subject><subject>Training</subject><subject>Upper limb functionality</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuFji3OJXHj6G8pQKHApna-OswSWNg50i8fe4BCH24tV4ZlaaybIzRueMUXVRLxbXq9WcU87mglY0V3wvO-KsUDORi2L_336Ynca4pmmqBOXlUfZek0f_iR2phyF4MG_E-kBehgEDWbpNQ262vRmd76Fz4xepY8QYN9iP5BIitsT35ApxIEuE0Lv-lUDfkodtN7qNb6EjK-zjDr6CEU6yAwtdxNPf9zh7ubl-XtzNlk-394t6OTOSVuNMNFXOWGEso3kuJTWKSqDScNEoUyIvrbW5FUIlnjWtBN5aaaCqTFtynj6Os_vJt_Ww1kNwGwhf2oPTP4APrxrC6EyHmkMBvGkahGRUlQqgoAVYaEEpqRpMXueTV0rnY4tx1Gu_DSmNqHkKlIpUAU0sMbFM8DEGtH9XGdW7kvRUkt6VpH9LSqqzSeUQ8U-hpEgCKr4BcjqN-A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Miao, Sheng</creator><creator>Dang, Yukun</creator><creator>Zhu, Qixiu</creator><creator>Li, Sudong</creator><creator>Shorfuzzaman, Mohammad</creator><creator>Lv, Haibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6176-3624</orcidid><orcidid>https://orcid.org/0000-0002-8050-8431</orcidid><orcidid>https://orcid.org/0000-0003-1059-4765</orcidid><orcidid>https://orcid.org/0000-0002-7751-5526</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Approach for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal Sensing Data</title><author>Miao, Sheng ; Dang, Yukun ; Zhu, Qixiu ; Li, Sudong ; Shorfuzzaman, Mohammad ; Lv, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3b85116cf1055440c904a04c23b9c7e27fff5f339b85fcd4a2df4ca88cd722f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Deep learning</topic><topic>healthcare</topic><topic>LSTM neural network</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medical services</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>multi-modal sensing data</topic><topic>Multimodal sensors</topic><topic>Neural networks</topic><topic>Rehabilitation</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Stroke (medical condition)</topic><topic>Surgery</topic><topic>Training</topic><topic>Upper limb functionality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Sheng</creatorcontrib><creatorcontrib>Dang, Yukun</creatorcontrib><creatorcontrib>Zhu, Qixiu</creatorcontrib><creatorcontrib>Li, Sudong</creatorcontrib><creatorcontrib>Shorfuzzaman, Mohammad</creatorcontrib><creatorcontrib>Lv, Haibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Sheng</au><au>Dang, Yukun</au><au>Zhu, Qixiu</au><au>Li, Sudong</au><au>Shorfuzzaman, Mohammad</au><au>Lv, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal Sensing Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>77138</spage><epage>77148</epage><pages>77138-77148</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Upper limb rehabilitation is an effective methodology to restore and improve the functionality of patients after multiple medical events, such as strokes, arthroscopic surgery, and breast cancer surgery. High-quality rehabilitation training can promote the independent living of patients, thus enhancing the quality of life and reducing the financial burden. Traditional training sessions have some limitations, including high expenses, low compliance, and inaccurate evaluations. This paper presents a novel approach to assist healthcare professionals in assessing the functionality of upper limbs based on multimodal sensing data and deep learning algorithms. There are five different types of sensing data employed in the proposed approach: accelerometer, angular velocity, device orientation, RGB image, and depth image data. In order to assess the accuracy of training actions, the presented approach applies two machine learning algorithms, which are the dynamic time warping-K-nearest neighbor (DTW-KNN) algorithm and the long short-term memory (LSTM) neural network. The experimental results show that multimodal sensing data can improve the modeling accuracy compared with unimodal sensing data. The LSTM model can achieve better accuracy (96.3%) than DTW-KNN (74.07%) with multimodal sensing data. Moreover, LSTM performs extremely efficiently in modeling high-dimensional sensing data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3080592</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6176-3624</orcidid><orcidid>https://orcid.org/0000-0002-8050-8431</orcidid><orcidid>https://orcid.org/0000-0003-1059-4765</orcidid><orcidid>https://orcid.org/0000-0002-7751-5526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.77138-77148 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9431090 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accelerometers Accuracy Algorithms Angular velocity Deep learning healthcare LSTM neural network Machine learning Medical imaging Medical services Model accuracy Modelling multi-modal sensing data Multimodal sensors Neural networks Rehabilitation Sensor systems Sensors Stroke (medical condition) Surgery Training Upper limb functionality |
title | A Novel Approach for Upper Limb Functionality Assessment Based on Deep Learning and Multimodal Sensing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20for%20Upper%20Limb%20Functionality%20Assessment%20Based%20on%20Deep%20Learning%20and%20Multimodal%20Sensing%20Data&rft.jtitle=IEEE%20access&rft.au=Miao,%20Sheng&rft.date=2021&rft.volume=9&rft.spage=77138&rft.epage=77148&rft.pages=77138-77148&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3080592&rft_dat=%3Cproquest_ieee_%3E2536031100%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536031100&rft_id=info:pmid/&rft_ieee_id=9431090&rft_doaj_id=oai_doaj_org_article_2a6a2bbbeacd4879aa606afada9949be&rfr_iscdi=true |