Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization
Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Shen, Yilang Li, Jingzhong Zhao, Rong Han, Fengfeng |
description | Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels. |
doi_str_mv | 10.1109/TGRS.2021.3076798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9430930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9430930</ieee_id><sourcerecordid>2615165691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d2f3bc0fdd216f2fcb8ee612c9997e8e0eb46252c68b8e39e1651d5d6c0f0bbe3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZu0uZTh5mBD2OadENL2dHS0TU1aYT69LRtenQPn-_8DHyGPwGYATL3sl9vdjDMOs5DFMlbJFZmAEEnAZBRdkwkDJQOeKH5L7rw_MgaRgHhCvjZ91ZUOva36rrQN3Zi2LZsDtQVdmyanc_uDji6crekWa9sh3WHjR2JVmwN6mp7oEm2NnSuzYWvQmar8NWPZPbkpTOXx4TKn5HPxtp-_B-uP5Wr-ug4yHokuyHkRphkr8pyDLHiRpQmiBJ4ppWJMkGEaSS54JpPhEioEKSAXuRwyLE0xnJLnc2_r7HePvtNH27tmeKm5BDHgUsFAwZnKnPXeYaFbV9bGnTQwPUrUo0Q9StQXiUPm6ZwpEfGfV1HIVMjCP-EebwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615165691</pqid></control><display><type>article</type><title>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Yilang ; Li, Jingzhong ; Zhao, Rong ; Han, Fengfeng</creator><creatorcontrib>Shen, Yilang ; Li, Jingzhong ; Zhao, Rong ; Han, Fengfeng</creatorcontrib><description>Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3076798</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aggregation ; Environmental management ; Environmental protection ; Image processing ; Image resolution ; Interpolation ; Land cover ; Land management ; Land use ; Land use management ; Laplace equations ; Mapping ; multiresolution mapping ; Operators (mathematics) ; Polygons ; Properties ; Redundancy ; Remote sensing ; remote sensing images ; Representations ; Research and development ; Semantics ; Sensors ; Spatial resolution ; superpixel segmentation ; Urban planning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d2f3bc0fdd216f2fcb8ee612c9997e8e0eb46252c68b8e39e1651d5d6c0f0bbe3</cites><orcidid>0000-0002-9699-8551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9430930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9430930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yilang</creatorcontrib><creatorcontrib>Li, Jingzhong</creatorcontrib><creatorcontrib>Zhao, Rong</creatorcontrib><creatorcontrib>Han, Fengfeng</creatorcontrib><title>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.</description><subject>Aggregation</subject><subject>Environmental management</subject><subject>Environmental protection</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Land cover</subject><subject>Land management</subject><subject>Land use</subject><subject>Land use management</subject><subject>Laplace equations</subject><subject>Mapping</subject><subject>multiresolution mapping</subject><subject>Operators (mathematics)</subject><subject>Polygons</subject><subject>Properties</subject><subject>Redundancy</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Representations</subject><subject>Research and development</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>superpixel segmentation</subject><subject>Urban planning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZu0uZTh5mBD2OadENL2dHS0TU1aYT69LRtenQPn-_8DHyGPwGYATL3sl9vdjDMOs5DFMlbJFZmAEEnAZBRdkwkDJQOeKH5L7rw_MgaRgHhCvjZ91ZUOva36rrQN3Zi2LZsDtQVdmyanc_uDji6crekWa9sh3WHjR2JVmwN6mp7oEm2NnSuzYWvQmar8NWPZPbkpTOXx4TKn5HPxtp-_B-uP5Wr-ug4yHokuyHkRphkr8pyDLHiRpQmiBJ4ppWJMkGEaSS54JpPhEioEKSAXuRwyLE0xnJLnc2_r7HePvtNH27tmeKm5BDHgUsFAwZnKnPXeYaFbV9bGnTQwPUrUo0Q9StQXiUPm6ZwpEfGfV1HIVMjCP-EebwA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shen, Yilang</creator><creator>Li, Jingzhong</creator><creator>Zhao, Rong</creator><creator>Han, Fengfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9699-8551</orcidid></search><sort><creationdate>2022</creationdate><title>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</title><author>Shen, Yilang ; Li, Jingzhong ; Zhao, Rong ; Han, Fengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d2f3bc0fdd216f2fcb8ee612c9997e8e0eb46252c68b8e39e1651d5d6c0f0bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregation</topic><topic>Environmental management</topic><topic>Environmental protection</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Land cover</topic><topic>Land management</topic><topic>Land use</topic><topic>Land use management</topic><topic>Laplace equations</topic><topic>Mapping</topic><topic>multiresolution mapping</topic><topic>Operators (mathematics)</topic><topic>Polygons</topic><topic>Properties</topic><topic>Redundancy</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Representations</topic><topic>Research and development</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>superpixel segmentation</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yilang</creatorcontrib><creatorcontrib>Li, Jingzhong</creatorcontrib><creatorcontrib>Zhao, Rong</creatorcontrib><creatorcontrib>Han, Fengfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yilang</au><au>Li, Jingzhong</au><au>Zhao, Rong</au><au>Han, Fengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3076798</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9699-8551</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-20 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9430930 |
source | IEEE Electronic Library (IEL) |
subjects | Aggregation Environmental management Environmental protection Image processing Image resolution Interpolation Land cover Land management Land use Land use management Laplace equations Mapping multiresolution mapping Operators (mathematics) Polygons Properties Redundancy Remote sensing remote sensing images Representations Research and development Semantics Sensors Spatial resolution superpixel segmentation Urban planning |
title | Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiresolution%20Mapping%20of%20Land%20Cover%20From%20Remote%20Sensing%20Images%20by%20Geometric%20Generalization&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shen,%20Yilang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3076798&rft_dat=%3Cproquest_RIE%3E2615165691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615165691&rft_id=info:pmid/&rft_ieee_id=9430930&rfr_iscdi=true |