Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization

Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-20
Hauptverfasser: Shen, Yilang, Li, Jingzhong, Zhao, Rong, Han, Fengfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Shen, Yilang
Li, Jingzhong
Zhao, Rong
Han, Fengfeng
description Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.
doi_str_mv 10.1109/TGRS.2021.3076798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9430930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9430930</ieee_id><sourcerecordid>2615165691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-d2f3bc0fdd216f2fcb8ee612c9997e8e0eb46252c68b8e39e1651d5d6c0f0bbe3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZu0uZTh5mBD2OadENL2dHS0TU1aYT69LRtenQPn-_8DHyGPwGYATL3sl9vdjDMOs5DFMlbJFZmAEEnAZBRdkwkDJQOeKH5L7rw_MgaRgHhCvjZ91ZUOva36rrQN3Zi2LZsDtQVdmyanc_uDji6crekWa9sh3WHjR2JVmwN6mp7oEm2NnSuzYWvQmar8NWPZPbkpTOXx4TKn5HPxtp-_B-uP5Wr-ug4yHokuyHkRphkr8pyDLHiRpQmiBJ4ppWJMkGEaSS54JpPhEioEKSAXuRwyLE0xnJLnc2_r7HePvtNH27tmeKm5BDHgUsFAwZnKnPXeYaFbV9bGnTQwPUrUo0Q9StQXiUPm6ZwpEfGfV1HIVMjCP-EebwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615165691</pqid></control><display><type>article</type><title>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Yilang ; Li, Jingzhong ; Zhao, Rong ; Han, Fengfeng</creator><creatorcontrib>Shen, Yilang ; Li, Jingzhong ; Zhao, Rong ; Han, Fengfeng</creatorcontrib><description>Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3076798</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aggregation ; Environmental management ; Environmental protection ; Image processing ; Image resolution ; Interpolation ; Land cover ; Land management ; Land use ; Land use management ; Laplace equations ; Mapping ; multiresolution mapping ; Operators (mathematics) ; Polygons ; Properties ; Redundancy ; Remote sensing ; remote sensing images ; Representations ; Research and development ; Semantics ; Sensors ; Spatial resolution ; superpixel segmentation ; Urban planning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-d2f3bc0fdd216f2fcb8ee612c9997e8e0eb46252c68b8e39e1651d5d6c0f0bbe3</cites><orcidid>0000-0002-9699-8551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9430930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9430930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yilang</creatorcontrib><creatorcontrib>Li, Jingzhong</creatorcontrib><creatorcontrib>Zhao, Rong</creatorcontrib><creatorcontrib>Han, Fengfeng</creatorcontrib><title>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.</description><subject>Aggregation</subject><subject>Environmental management</subject><subject>Environmental protection</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Land cover</subject><subject>Land management</subject><subject>Land use</subject><subject>Land use management</subject><subject>Laplace equations</subject><subject>Mapping</subject><subject>multiresolution mapping</subject><subject>Operators (mathematics)</subject><subject>Polygons</subject><subject>Properties</subject><subject>Redundancy</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Representations</subject><subject>Research and development</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>superpixel segmentation</subject><subject>Urban planning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZu0uZTh5mBD2OadENL2dHS0TU1aYT69LRtenQPn-_8DHyGPwGYATL3sl9vdjDMOs5DFMlbJFZmAEEnAZBRdkwkDJQOeKH5L7rw_MgaRgHhCvjZ91ZUOva36rrQN3Zi2LZsDtQVdmyanc_uDji6crekWa9sh3WHjR2JVmwN6mp7oEm2NnSuzYWvQmar8NWPZPbkpTOXx4TKn5HPxtp-_B-uP5Wr-ug4yHokuyHkRphkr8pyDLHiRpQmiBJ4ppWJMkGEaSS54JpPhEioEKSAXuRwyLE0xnJLnc2_r7HePvtNH27tmeKm5BDHgUsFAwZnKnPXeYaFbV9bGnTQwPUrUo0Q9StQXiUPm6ZwpEfGfV1HIVMjCP-EebwA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shen, Yilang</creator><creator>Li, Jingzhong</creator><creator>Zhao, Rong</creator><creator>Han, Fengfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9699-8551</orcidid></search><sort><creationdate>2022</creationdate><title>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</title><author>Shen, Yilang ; Li, Jingzhong ; Zhao, Rong ; Han, Fengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-d2f3bc0fdd216f2fcb8ee612c9997e8e0eb46252c68b8e39e1651d5d6c0f0bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregation</topic><topic>Environmental management</topic><topic>Environmental protection</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Land cover</topic><topic>Land management</topic><topic>Land use</topic><topic>Land use management</topic><topic>Laplace equations</topic><topic>Mapping</topic><topic>multiresolution mapping</topic><topic>Operators (mathematics)</topic><topic>Polygons</topic><topic>Properties</topic><topic>Redundancy</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Representations</topic><topic>Research and development</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>superpixel segmentation</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yilang</creatorcontrib><creatorcontrib>Li, Jingzhong</creatorcontrib><creatorcontrib>Zhao, Rong</creatorcontrib><creatorcontrib>Han, Fengfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yilang</au><au>Li, Jingzhong</au><au>Zhao, Rong</au><au>Han, Fengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Land cover multiresolution mapping of remote sensing images contributes greatly to land-use management, environmental protection, and city planning. In traditional mapping of this type, the representation of different land-use types depends on the image resolution, and the geometric, topologic, and semantic characteristics are not considered. This approach can cause a loss of useful information and the redundancy of useless information. In this study, we propose a superpixel-based land cover (multiresolution representation SULR) method for remote sensing images that employs multifeature fusion. In this process, we first define three basic superpixel operations, collapse, connection, and cutting, as the basic operators of multiresolution land cover mapping. Then, the topological adjacent land parcels are combined through the amalgamation of polygons with heterogeneous properties and aggregation of polygons with homogeneous properties based on the three proposed superpixel operators. Finally, the geometric boundaries of parcels are simplified by combining the superpixel collapse operator and image thinning technologies. Compared with traditional image scale transformation methods, the proposed method can more effectively achieve multiresolution mapping of land cover from remote sensing images by considering the geometric, topologic, and semantic characteristics of land parcels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3076798</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9699-8551</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-20
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9430930
source IEEE Electronic Library (IEL)
subjects Aggregation
Environmental management
Environmental protection
Image processing
Image resolution
Interpolation
Land cover
Land management
Land use
Land use management
Laplace equations
Mapping
multiresolution mapping
Operators (mathematics)
Polygons
Properties
Redundancy
Remote sensing
remote sensing images
Representations
Research and development
Semantics
Sensors
Spatial resolution
superpixel segmentation
Urban planning
title Multiresolution Mapping of Land Cover From Remote Sensing Images by Geometric Generalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiresolution%20Mapping%20of%20Land%20Cover%20From%20Remote%20Sensing%20Images%20by%20Geometric%20Generalization&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shen,%20Yilang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3076798&rft_dat=%3Cproquest_RIE%3E2615165691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615165691&rft_id=info:pmid/&rft_ieee_id=9430930&rfr_iscdi=true