Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement
Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage respon...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.69127-69138 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69138 |
---|---|
container_issue | |
container_start_page | 69127 |
container_title | IEEE access |
container_volume | 9 |
creator | Skwarski, Mateusz M. Robak, Sylwester Piekarz, Michal R. Polewaczyk, Mateusz M. |
description | Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach. |
doi_str_mv | 10.1109/ACCESS.2021.3077333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9422822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422822</ieee_id><doaj_id>oai_doaj_org_article_63f21f3e9ba64392bfa098645fd2569f</doaj_id><sourcerecordid>2526968447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURB0X6BLws-b819N49avBSUglvBt5BNJpradmuSFvTrTV0RA0MyZ-aczHCK4hyjMcZIXl5NJjdtOyaI4DFFdU0pPShOCBayopyKw3_v42IU4wLl02SI1yfFy-N2mXw16xZgkt9BOdskv9LLsvVffv1a9q5s37brVF4H_b4HniD6mPpQuhzzoNfRQy63SScop6tN6HewyshZceT0MsLo9z4tnm9v5pP76mF2N51cPVSG1U2qagKdaTSvQUrTYEucMZgiaixlVmjLJEPGkJx1mHKLEAfNrSDailoi2dHTYjro2l4v1Cbk4cOn6rVXP0AfXpUOyZslKEEdwY6C7LRgVJLOaSQbwbizhAvpstbFoJW3-NhCTGrRb8M6j68IJ0KKhrE6d9Ghy4Q-xgDu71eM1N4RNTii9o6oX0cy63xgeQD4Y0hGSEMI_QaxfYcs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526968447</pqid></control><display><type>article</type><title>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Skwarski, Mateusz M. ; Robak, Sylwester ; Piekarz, Michal R. ; Polewaczyk, Mateusz M.</creator><creatorcontrib>Skwarski, Mateusz M. ; Robak, Sylwester ; Piekarz, Michal R. ; Polewaczyk, Mateusz M.</creatorcontrib><description>Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3077333</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Braking ; Dynamic response ; Electronic equipment tests ; Evolutionary algorithms ; Model testing ; multi-objective optimization ; Multiple objective analysis ; Optimization ; Power system stability ; Power system transient stability ; resistor sizing ; Resistors ; Security ; Shafts ; Shafts (machine elements) ; shunt braking resistor ; Sizing ; Stability criteria ; Transient analysis ; Transient stability ; Turbines</subject><ispartof>IEEE access, 2021, Vol.9, p.69127-69138</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</citedby><cites>FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</cites><orcidid>0000-0003-1500-2634 ; 0000-0001-6606-5032 ; 0000-0002-1791-957X ; 0000-0003-1324-4242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422822$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Skwarski, Mateusz M.</creatorcontrib><creatorcontrib>Robak, Sylwester</creatorcontrib><creatorcontrib>Piekarz, Michal R.</creatorcontrib><creatorcontrib>Polewaczyk, Mateusz M.</creatorcontrib><title>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.</description><subject>Braking</subject><subject>Dynamic response</subject><subject>Electronic equipment tests</subject><subject>Evolutionary algorithms</subject><subject>Model testing</subject><subject>multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Power system stability</subject><subject>Power system transient stability</subject><subject>resistor sizing</subject><subject>Resistors</subject><subject>Security</subject><subject>Shafts</subject><subject>Shafts (machine elements)</subject><subject>shunt braking resistor</subject><subject>Sizing</subject><subject>Stability criteria</subject><subject>Transient analysis</subject><subject>Transient stability</subject><subject>Turbines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURB0X6BLws-b819N49avBSUglvBt5BNJpradmuSFvTrTV0RA0MyZ-aczHCK4hyjMcZIXl5NJjdtOyaI4DFFdU0pPShOCBayopyKw3_v42IU4wLl02SI1yfFy-N2mXw16xZgkt9BOdskv9LLsvVffv1a9q5s37brVF4H_b4HniD6mPpQuhzzoNfRQy63SScop6tN6HewyshZceT0MsLo9z4tnm9v5pP76mF2N51cPVSG1U2qagKdaTSvQUrTYEucMZgiaixlVmjLJEPGkJx1mHKLEAfNrSDailoi2dHTYjro2l4v1Cbk4cOn6rVXP0AfXpUOyZslKEEdwY6C7LRgVJLOaSQbwbizhAvpstbFoJW3-NhCTGrRb8M6j68IJ0KKhrE6d9Ghy4Q-xgDu71eM1N4RNTii9o6oX0cy63xgeQD4Y0hGSEMI_QaxfYcs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Skwarski, Mateusz M.</creator><creator>Robak, Sylwester</creator><creator>Piekarz, Michal R.</creator><creator>Polewaczyk, Mateusz M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1500-2634</orcidid><orcidid>https://orcid.org/0000-0001-6606-5032</orcidid><orcidid>https://orcid.org/0000-0002-1791-957X</orcidid><orcidid>https://orcid.org/0000-0003-1324-4242</orcidid></search><sort><creationdate>2021</creationdate><title>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</title><author>Skwarski, Mateusz M. ; Robak, Sylwester ; Piekarz, Michal R. ; Polewaczyk, Mateusz M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Braking</topic><topic>Dynamic response</topic><topic>Electronic equipment tests</topic><topic>Evolutionary algorithms</topic><topic>Model testing</topic><topic>multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Power system stability</topic><topic>Power system transient stability</topic><topic>resistor sizing</topic><topic>Resistors</topic><topic>Security</topic><topic>Shafts</topic><topic>Shafts (machine elements)</topic><topic>shunt braking resistor</topic><topic>Sizing</topic><topic>Stability criteria</topic><topic>Transient analysis</topic><topic>Transient stability</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skwarski, Mateusz M.</creatorcontrib><creatorcontrib>Robak, Sylwester</creatorcontrib><creatorcontrib>Piekarz, Michal R.</creatorcontrib><creatorcontrib>Polewaczyk, Mateusz M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skwarski, Mateusz M.</au><au>Robak, Sylwester</au><au>Piekarz, Michal R.</au><au>Polewaczyk, Mateusz M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>69127</spage><epage>69138</epage><pages>69127-69138</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3077333</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1500-2634</orcidid><orcidid>https://orcid.org/0000-0001-6606-5032</orcidid><orcidid>https://orcid.org/0000-0002-1791-957X</orcidid><orcidid>https://orcid.org/0000-0003-1324-4242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.69127-69138 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9422822 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Braking Dynamic response Electronic equipment tests Evolutionary algorithms Model testing multi-objective optimization Multiple objective analysis Optimization Power system stability Power system transient stability resistor sizing Resistors Security Shafts Shafts (machine elements) shunt braking resistor Sizing Stability criteria Transient analysis Transient stability Turbines |
title | Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Optimal%20Sizing%20of%20Shunt%20Braking%20Resistor%20for%20Transient%20State%20Improvement&rft.jtitle=IEEE%20access&rft.au=Skwarski,%20Mateusz%20M.&rft.date=2021&rft.volume=9&rft.spage=69127&rft.epage=69138&rft.pages=69127-69138&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3077333&rft_dat=%3Cproquest_ieee_%3E2526968447%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526968447&rft_id=info:pmid/&rft_ieee_id=9422822&rft_doaj_id=oai_doaj_org_article_63f21f3e9ba64392bfa098645fd2569f&rfr_iscdi=true |