Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement

Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.69127-69138
Hauptverfasser: Skwarski, Mateusz M., Robak, Sylwester, Piekarz, Michal R., Polewaczyk, Mateusz M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69138
container_issue
container_start_page 69127
container_title IEEE access
container_volume 9
creator Skwarski, Mateusz M.
Robak, Sylwester
Piekarz, Michal R.
Polewaczyk, Mateusz M.
description Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.
doi_str_mv 10.1109/ACCESS.2021.3077333
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9422822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422822</ieee_id><doaj_id>oai_doaj_org_article_63f21f3e9ba64392bfa098645fd2569f</doaj_id><sourcerecordid>2526968447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURB0X6BLws-b819N49avBSUglvBt5BNJpradmuSFvTrTV0RA0MyZ-aczHCK4hyjMcZIXl5NJjdtOyaI4DFFdU0pPShOCBayopyKw3_v42IU4wLl02SI1yfFy-N2mXw16xZgkt9BOdskv9LLsvVffv1a9q5s37brVF4H_b4HniD6mPpQuhzzoNfRQy63SScop6tN6HewyshZceT0MsLo9z4tnm9v5pP76mF2N51cPVSG1U2qagKdaTSvQUrTYEucMZgiaixlVmjLJEPGkJx1mHKLEAfNrSDailoi2dHTYjro2l4v1Cbk4cOn6rVXP0AfXpUOyZslKEEdwY6C7LRgVJLOaSQbwbizhAvpstbFoJW3-NhCTGrRb8M6j68IJ0KKhrE6d9Ghy4Q-xgDu71eM1N4RNTii9o6oX0cy63xgeQD4Y0hGSEMI_QaxfYcs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526968447</pqid></control><display><type>article</type><title>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Skwarski, Mateusz M. ; Robak, Sylwester ; Piekarz, Michal R. ; Polewaczyk, Mateusz M.</creator><creatorcontrib>Skwarski, Mateusz M. ; Robak, Sylwester ; Piekarz, Michal R. ; Polewaczyk, Mateusz M.</creatorcontrib><description>Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3077333</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Braking ; Dynamic response ; Electronic equipment tests ; Evolutionary algorithms ; Model testing ; multi-objective optimization ; Multiple objective analysis ; Optimization ; Power system stability ; Power system transient stability ; resistor sizing ; Resistors ; Security ; Shafts ; Shafts (machine elements) ; shunt braking resistor ; Sizing ; Stability criteria ; Transient analysis ; Transient stability ; Turbines</subject><ispartof>IEEE access, 2021, Vol.9, p.69127-69138</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</citedby><cites>FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</cites><orcidid>0000-0003-1500-2634 ; 0000-0001-6606-5032 ; 0000-0002-1791-957X ; 0000-0003-1324-4242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422822$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Skwarski, Mateusz M.</creatorcontrib><creatorcontrib>Robak, Sylwester</creatorcontrib><creatorcontrib>Piekarz, Michal R.</creatorcontrib><creatorcontrib>Polewaczyk, Mateusz M.</creatorcontrib><title>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.</description><subject>Braking</subject><subject>Dynamic response</subject><subject>Electronic equipment tests</subject><subject>Evolutionary algorithms</subject><subject>Model testing</subject><subject>multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Power system stability</subject><subject>Power system transient stability</subject><subject>resistor sizing</subject><subject>Resistors</subject><subject>Security</subject><subject>Shafts</subject><subject>Shafts (machine elements)</subject><subject>shunt braking resistor</subject><subject>Sizing</subject><subject>Stability criteria</subject><subject>Transient analysis</subject><subject>Transient stability</subject><subject>Turbines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURB0X6BLws-b819N49avBSUglvBt5BNJpradmuSFvTrTV0RA0MyZ-aczHCK4hyjMcZIXl5NJjdtOyaI4DFFdU0pPShOCBayopyKw3_v42IU4wLl02SI1yfFy-N2mXw16xZgkt9BOdskv9LLsvVffv1a9q5s37brVF4H_b4HniD6mPpQuhzzoNfRQy63SScop6tN6HewyshZceT0MsLo9z4tnm9v5pP76mF2N51cPVSG1U2qagKdaTSvQUrTYEucMZgiaixlVmjLJEPGkJx1mHKLEAfNrSDailoi2dHTYjro2l4v1Cbk4cOn6rVXP0AfXpUOyZslKEEdwY6C7LRgVJLOaSQbwbizhAvpstbFoJW3-NhCTGrRb8M6j68IJ0KKhrE6d9Ghy4Q-xgDu71eM1N4RNTii9o6oX0cy63xgeQD4Y0hGSEMI_QaxfYcs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Skwarski, Mateusz M.</creator><creator>Robak, Sylwester</creator><creator>Piekarz, Michal R.</creator><creator>Polewaczyk, Mateusz M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1500-2634</orcidid><orcidid>https://orcid.org/0000-0001-6606-5032</orcidid><orcidid>https://orcid.org/0000-0002-1791-957X</orcidid><orcidid>https://orcid.org/0000-0003-1324-4242</orcidid></search><sort><creationdate>2021</creationdate><title>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</title><author>Skwarski, Mateusz M. ; Robak, Sylwester ; Piekarz, Michal R. ; Polewaczyk, Mateusz M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-72ebc8a57e99c81d2fcc1303cd34d6ad4940cc2d34b135d005ea5d62ad67909b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Braking</topic><topic>Dynamic response</topic><topic>Electronic equipment tests</topic><topic>Evolutionary algorithms</topic><topic>Model testing</topic><topic>multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Power system stability</topic><topic>Power system transient stability</topic><topic>resistor sizing</topic><topic>Resistors</topic><topic>Security</topic><topic>Shafts</topic><topic>Shafts (machine elements)</topic><topic>shunt braking resistor</topic><topic>Sizing</topic><topic>Stability criteria</topic><topic>Transient analysis</topic><topic>Transient stability</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skwarski, Mateusz M.</creatorcontrib><creatorcontrib>Robak, Sylwester</creatorcontrib><creatorcontrib>Piekarz, Michal R.</creatorcontrib><creatorcontrib>Polewaczyk, Mateusz M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skwarski, Mateusz M.</au><au>Robak, Sylwester</au><au>Piekarz, Michal R.</au><au>Polewaczyk, Mateusz M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>69127</spage><epage>69138</epage><pages>69127-69138</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power system transient stability can be effectively improved by applying shunt braking resistors. This paper proposes multi-objective heuristics-based optimization for shunt braking resistor sizing. The proposed approach addresses three objectives: transient angle stability, transient voltage response, and mechanical stress of the turbine-generator shaft. The optimization problem was solved using a Python implementation of the multi-objective evolutionary NSGA-II algorithm. Based on the optimization model, comprehensive tests for multimachine IEEE 39-bus power system including single- and multi-objective simulations were performed. Pareto sets for various sets of objectives are obtained and discussed. The results show the complexity of the shunt braking resistor optimization process. Optimization studies were complemented by simulation tests performed for assessing of the impact of optimal shunt braking resistor on power system dynamic response. Detailed discussion of test results has confirmed the correctness of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3077333</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1500-2634</orcidid><orcidid>https://orcid.org/0000-0001-6606-5032</orcidid><orcidid>https://orcid.org/0000-0002-1791-957X</orcidid><orcidid>https://orcid.org/0000-0003-1324-4242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.69127-69138
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9422822
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Braking
Dynamic response
Electronic equipment tests
Evolutionary algorithms
Model testing
multi-objective optimization
Multiple objective analysis
Optimization
Power system stability
Power system transient stability
resistor sizing
Resistors
Security
Shafts
Shafts (machine elements)
shunt braking resistor
Sizing
Stability criteria
Transient analysis
Transient stability
Turbines
title Multi-Objective Optimal Sizing of Shunt Braking Resistor for Transient State Improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Optimal%20Sizing%20of%20Shunt%20Braking%20Resistor%20for%20Transient%20State%20Improvement&rft.jtitle=IEEE%20access&rft.au=Skwarski,%20Mateusz%20M.&rft.date=2021&rft.volume=9&rft.spage=69127&rft.epage=69138&rft.pages=69127-69138&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3077333&rft_dat=%3Cproquest_ieee_%3E2526968447%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526968447&rft_id=info:pmid/&rft_ieee_id=9422822&rft_doaj_id=oai_doaj_org_article_63f21f3e9ba64392bfa098645fd2569f&rfr_iscdi=true