When the Bad Is Good and the Good Is Bad: Understanding Cyber Social Health Through Online Behavioral Change

Following the Special Issue on Cyber Social Health: Part 1 in the January/February 2021 issue, in this issue, we highlight another five papers that were accepted based on the quality of the analysis, results, and presentation. In “Towards Hate Speech Detection at Large via Deep Generative Modeling,”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet computing 2021-03, Vol.25 (2), p.46-47
Hauptverfasser: Kursuncu, Ugur, Purohit, Hemant, Agarwal, Nitin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 2
container_start_page 46
container_title IEEE internet computing
container_volume 25
creator Kursuncu, Ugur
Purohit, Hemant
Agarwal, Nitin
Kursuncu, Ugur
description Following the Special Issue on Cyber Social Health: Part 1 in the January/February 2021 issue, in this issue, we highlight another five papers that were accepted based on the quality of the analysis, results, and presentation. In “Towards Hate Speech Detection at Large via Deep Generative Modeling,” the authors developed an approach to improve supervised hate speech detection on social media by creating a large dataset of hate speech from a small seed set. They introduced a big ground truth dataset and assessed the generalizability of models to the variability in communications with hate speech. This work attempts to overcome the lack of diversity and improve coverage in the input dataset, and the data imbalance. The authors employ GPT-2 fine-tuned on the existing labeled datasets, to generate a larger diverse hate speech dataset. They also perform a comparative analysis on the inductive biases of DL methods during training on individual hate-speech datasets.
doi_str_mv 10.1109/MIC.2021.3059262
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_9420083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9420083</ieee_id><sourcerecordid>10_1109_MIC_2021_3059262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1032-3e4296f312d8dddcb83617fc30080587b205e99b6d85a7b524f89a4d5a15dc503</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIdiYt_IGXXjhObG0T0IRX1QCuOkRM7TVBwkF2Q-ve4D3Ha3ZnZ2dUQco8wQQT1-LYoJgwYTjgIxTJ2QUaoUkwAOV7GHqRKcgl4TW5C-AQAKRmOSP_RWkd3raUv2tBFoLNhMFQ7c8SOQwQj90Q3zlgfdpHr3JYW-8p6-j7Une7p3Op-19J164efbUtXru9cdLSt_u0GHwVFq93W3pKrRvfB3p3rmGymr-tinixXs0XxvExqBM4SblOmsoYjM9IYU1eSZ5g3NY9Pg5B5xUBYparMSKHzSrC0kUqnRmgUphbAxwROvrUfQvC2Kb9996X9vkQoD2mVMa3ykFZ5TiuuPJxWOmvtv1ylLN7k_A8cxmRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>When the Bad Is Good and the Good Is Bad: Understanding Cyber Social Health Through Online Behavioral Change</title><source>IEEE Electronic Library (IEL)</source><creator>Kursuncu, Ugur ; Purohit, Hemant ; Agarwal, Nitin ; Kursuncu, Ugur</creator><creatorcontrib>Kursuncu, Ugur ; Purohit, Hemant ; Agarwal, Nitin ; Kursuncu, Ugur</creatorcontrib><description>Following the Special Issue on Cyber Social Health: Part 1 in the January/February 2021 issue, in this issue, we highlight another five papers that were accepted based on the quality of the analysis, results, and presentation. In “Towards Hate Speech Detection at Large via Deep Generative Modeling,” the authors developed an approach to improve supervised hate speech detection on social media by creating a large dataset of hate speech from a small seed set. They introduced a big ground truth dataset and assessed the generalizability of models to the variability in communications with hate speech. This work attempts to overcome the lack of diversity and improve coverage in the input dataset, and the data imbalance. The authors employ GPT-2 fine-tuned on the existing labeled datasets, to generate a larger diverse hate speech dataset. They also perform a comparative analysis on the inductive biases of DL methods during training on individual hate-speech datasets.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2021.3059262</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>COVID-19 ; Cyberbullying ; Deep learning ; Emotion recognition ; Ethics ; Fake news ; Hate speech ; Medical services ; Social computing ; Social factors ; Social networking (online) ; Special issues and sections</subject><ispartof>IEEE internet computing, 2021-03, Vol.25 (2), p.46-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5612-4753 ; 0000-0002-4573-8450 ; 0000-0002-8108-9590 ; 0000-0002-0021-5293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9420083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9420083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kursuncu, Ugur</creatorcontrib><creatorcontrib>Purohit, Hemant</creatorcontrib><creatorcontrib>Agarwal, Nitin</creatorcontrib><creatorcontrib>Kursuncu, Ugur</creatorcontrib><title>When the Bad Is Good and the Good Is Bad: Understanding Cyber Social Health Through Online Behavioral Change</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>Following the Special Issue on Cyber Social Health: Part 1 in the January/February 2021 issue, in this issue, we highlight another five papers that were accepted based on the quality of the analysis, results, and presentation. In “Towards Hate Speech Detection at Large via Deep Generative Modeling,” the authors developed an approach to improve supervised hate speech detection on social media by creating a large dataset of hate speech from a small seed set. They introduced a big ground truth dataset and assessed the generalizability of models to the variability in communications with hate speech. This work attempts to overcome the lack of diversity and improve coverage in the input dataset, and the data imbalance. The authors employ GPT-2 fine-tuned on the existing labeled datasets, to generate a larger diverse hate speech dataset. They also perform a comparative analysis on the inductive biases of DL methods during training on individual hate-speech datasets.</description><subject>COVID-19</subject><subject>Cyberbullying</subject><subject>Deep learning</subject><subject>Emotion recognition</subject><subject>Ethics</subject><subject>Fake news</subject><subject>Hate speech</subject><subject>Medical services</subject><subject>Social computing</subject><subject>Social factors</subject><subject>Social networking (online)</subject><subject>Special issues and sections</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIdiYt_IGXXjhObG0T0IRX1QCuOkRM7TVBwkF2Q-ve4D3Ha3ZnZ2dUQco8wQQT1-LYoJgwYTjgIxTJ2QUaoUkwAOV7GHqRKcgl4TW5C-AQAKRmOSP_RWkd3raUv2tBFoLNhMFQ7c8SOQwQj90Q3zlgfdpHr3JYW-8p6-j7Une7p3Op-19J164efbUtXru9cdLSt_u0GHwVFq93W3pKrRvfB3p3rmGymr-tinixXs0XxvExqBM4SblOmsoYjM9IYU1eSZ5g3NY9Pg5B5xUBYparMSKHzSrC0kUqnRmgUphbAxwROvrUfQvC2Kb9996X9vkQoD2mVMa3ykFZ5TiuuPJxWOmvtv1ylLN7k_A8cxmRI</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Kursuncu, Ugur</creator><creator>Purohit, Hemant</creator><creator>Agarwal, Nitin</creator><creator>Kursuncu, Ugur</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5612-4753</orcidid><orcidid>https://orcid.org/0000-0002-4573-8450</orcidid><orcidid>https://orcid.org/0000-0002-8108-9590</orcidid><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid></search><sort><creationdate>202103</creationdate><title>When the Bad Is Good and the Good Is Bad: Understanding Cyber Social Health Through Online Behavioral Change</title><author>Kursuncu, Ugur ; Purohit, Hemant ; Agarwal, Nitin ; Kursuncu, Ugur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1032-3e4296f312d8dddcb83617fc30080587b205e99b6d85a7b524f89a4d5a15dc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>COVID-19</topic><topic>Cyberbullying</topic><topic>Deep learning</topic><topic>Emotion recognition</topic><topic>Ethics</topic><topic>Fake news</topic><topic>Hate speech</topic><topic>Medical services</topic><topic>Social computing</topic><topic>Social factors</topic><topic>Social networking (online)</topic><topic>Special issues and sections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kursuncu, Ugur</creatorcontrib><creatorcontrib>Purohit, Hemant</creatorcontrib><creatorcontrib>Agarwal, Nitin</creatorcontrib><creatorcontrib>Kursuncu, Ugur</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kursuncu, Ugur</au><au>Purohit, Hemant</au><au>Agarwal, Nitin</au><au>Kursuncu, Ugur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When the Bad Is Good and the Good Is Bad: Understanding Cyber Social Health Through Online Behavioral Change</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2021-03</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>46</spage><epage>47</epage><pages>46-47</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>Following the Special Issue on Cyber Social Health: Part 1 in the January/February 2021 issue, in this issue, we highlight another five papers that were accepted based on the quality of the analysis, results, and presentation. In “Towards Hate Speech Detection at Large via Deep Generative Modeling,” the authors developed an approach to improve supervised hate speech detection on social media by creating a large dataset of hate speech from a small seed set. They introduced a big ground truth dataset and assessed the generalizability of models to the variability in communications with hate speech. This work attempts to overcome the lack of diversity and improve coverage in the input dataset, and the data imbalance. The authors employ GPT-2 fine-tuned on the existing labeled datasets, to generate a larger diverse hate speech dataset. They also perform a comparative analysis on the inductive biases of DL methods during training on individual hate-speech datasets.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2021.3059262</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-5612-4753</orcidid><orcidid>https://orcid.org/0000-0002-4573-8450</orcidid><orcidid>https://orcid.org/0000-0002-8108-9590</orcidid><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7801
ispartof IEEE internet computing, 2021-03, Vol.25 (2), p.46-47
issn 1089-7801
1941-0131
language eng
recordid cdi_ieee_primary_9420083
source IEEE Electronic Library (IEL)
subjects COVID-19
Cyberbullying
Deep learning
Emotion recognition
Ethics
Fake news
Hate speech
Medical services
Social computing
Social factors
Social networking (online)
Special issues and sections
title When the Bad Is Good and the Good Is Bad: Understanding Cyber Social Health Through Online Behavioral Change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20the%20Bad%20Is%20Good%20and%20the%20Good%20Is%20Bad:%20Understanding%20Cyber%20Social%20Health%20Through%20Online%20Behavioral%20Change&rft.jtitle=IEEE%20internet%20computing&rft.au=Kursuncu,%20Ugur&rft.date=2021-03&rft.volume=25&rft.issue=2&rft.spage=46&rft.epage=47&rft.pages=46-47&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2021.3059262&rft_dat=%3Ccrossref_RIE%3E10_1109_MIC_2021_3059262%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9420083&rfr_iscdi=true