Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon
In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposit...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2021-07, Vol.11 (4), p.936-943 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 943 |
---|---|
container_issue | 4 |
container_start_page | 936 |
container_title | IEEE journal of photovoltaics |
container_volume | 11 |
creator | Harter, Angelika Polzin, Jana-Isabelle Tutsch, Leonard Temmler, Jan Hofmann, Marc Moldovan, Anamaria Feldmann, Frank |
description | In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts. |
doi_str_mv | 10.1109/JPHOTOV.2021.3071220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9419956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419956</ieee_id><sourcerecordid>2544298935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</originalsourceid><addsrcrecordid>eNo9UF1LwzAULaLgmPsF-lDwuTMfbdo8ajfdZNCBc68lTW4xo0tq2oH7Cf5rM1Z3CdyTnHPuJScIHjCaYoz40_t6UWyK7ZQggqcUpZgQdBWMCE5YRGNEr_8xzfBtMOm6HfLFUMJYPAp-l6ZuDmAkhLYOl6Z32nRahh-60dKacCWO4EJh1IkDtwelRQ8XuvjRCgaRv_ZfEK7B1dbtxWVko41_nefbWTiD1na6BxW-WGdNNLOtx5tinVtzF9zUoulgMvRx8Pk63-SLaFW8LfPnVSQJ532U1VBRpKo4Bv_RTKqKIZZlnIPnk1qlPK04QopiSaCSFAl_0gwwUakQwOg4eDzPbZ39PkDXlzt7cMavLEkSx4RnnCZeFZ9V0tmuc1CXrdN74Y4lRuUp93LIvTzlXg65e9v92aYB4GLhMeY8YfQP4iF_qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544298935</pqid></control><display><type>article</type><title>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</title><source>IEEE Electronic Library (IEL)</source><creator>Harter, Angelika ; Polzin, Jana-Isabelle ; Tutsch, Leonard ; Temmler, Jan ; Hofmann, Marc ; Moldovan, Anamaria ; Feldmann, Frank</creator><creatorcontrib>Harter, Angelika ; Polzin, Jana-Isabelle ; Tutsch, Leonard ; Temmler, Jan ; Hofmann, Marc ; Moldovan, Anamaria ; Feldmann, Frank</creatorcontrib><description>In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3071220</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><![CDATA[Amorphous silicon ; Annealing ; Annealing furnaces ; Boron ; Carbon content ; Conductivity ; Diffusion layers ; Electric contacts ; Energy conversion efficiency ; Inline plasma-enhanced chemical vapor deposition (PECVD) ; Open circuit voltage ; Optimization ; passivating and carrier-selective contacts ; Passivation ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content> ; Silicon ; Silicon carbide ; Silicon oxides ; silicon solar cells ; Solar cells ; Thin films ; TOPCon]]></subject><ispartof>IEEE journal of photovoltaics, 2021-07, Vol.11 (4), p.936-943</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</citedby><cites>FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</cites><orcidid>0000-0001-6698-5541 ; 0000-0003-3814-6403 ; 0000-0002-2372-164X ; 0000-0002-8744-2105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harter, Angelika</creatorcontrib><creatorcontrib>Polzin, Jana-Isabelle</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Temmler, Jan</creatorcontrib><creatorcontrib>Hofmann, Marc</creatorcontrib><creatorcontrib>Moldovan, Anamaria</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><title>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.</description><subject>Amorphous silicon</subject><subject>Annealing</subject><subject>Annealing furnaces</subject><subject>Boron</subject><subject>Carbon content</subject><subject>Conductivity</subject><subject>Diffusion layers</subject><subject>Electric contacts</subject><subject>Energy conversion efficiency</subject><subject>Inline plasma-enhanced chemical vapor deposition (PECVD)</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>passivating and carrier-selective contacts</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject><![CDATA[poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content>]]></subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Silicon oxides</subject><subject>silicon solar cells</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>TOPCon</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAULaLgmPsF-lDwuTMfbdo8ajfdZNCBc68lTW4xo0tq2oH7Cf5rM1Z3CdyTnHPuJScIHjCaYoz40_t6UWyK7ZQggqcUpZgQdBWMCE5YRGNEr_8xzfBtMOm6HfLFUMJYPAp-l6ZuDmAkhLYOl6Z32nRahh-60dKacCWO4EJh1IkDtwelRQ8XuvjRCgaRv_ZfEK7B1dbtxWVko41_nefbWTiD1na6BxW-WGdNNLOtx5tinVtzF9zUoulgMvRx8Pk63-SLaFW8LfPnVSQJ532U1VBRpKo4Bv_RTKqKIZZlnIPnk1qlPK04QopiSaCSFAl_0gwwUakQwOg4eDzPbZ39PkDXlzt7cMavLEkSx4RnnCZeFZ9V0tmuc1CXrdN74Y4lRuUp93LIvTzlXg65e9v92aYB4GLhMeY8YfQP4iF_qg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Harter, Angelika</creator><creator>Polzin, Jana-Isabelle</creator><creator>Tutsch, Leonard</creator><creator>Temmler, Jan</creator><creator>Hofmann, Marc</creator><creator>Moldovan, Anamaria</creator><creator>Feldmann, Frank</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6698-5541</orcidid><orcidid>https://orcid.org/0000-0003-3814-6403</orcidid><orcidid>https://orcid.org/0000-0002-2372-164X</orcidid><orcidid>https://orcid.org/0000-0002-8744-2105</orcidid></search><sort><creationdate>20210701</creationdate><title>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</title><author>Harter, Angelika ; Polzin, Jana-Isabelle ; Tutsch, Leonard ; Temmler, Jan ; Hofmann, Marc ; Moldovan, Anamaria ; Feldmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous silicon</topic><topic>Annealing</topic><topic>Annealing furnaces</topic><topic>Boron</topic><topic>Carbon content</topic><topic>Conductivity</topic><topic>Diffusion layers</topic><topic>Electric contacts</topic><topic>Energy conversion efficiency</topic><topic>Inline plasma-enhanced chemical vapor deposition (PECVD)</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>passivating and carrier-selective contacts</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic><![CDATA[poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content>]]></topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Silicon oxides</topic><topic>silicon solar cells</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>TOPCon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harter, Angelika</creatorcontrib><creatorcontrib>Polzin, Jana-Isabelle</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Temmler, Jan</creatorcontrib><creatorcontrib>Hofmann, Marc</creatorcontrib><creatorcontrib>Moldovan, Anamaria</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harter, Angelika</au><au>Polzin, Jana-Isabelle</au><au>Tutsch, Leonard</au><au>Temmler, Jan</au><au>Hofmann, Marc</au><au>Moldovan, Anamaria</au><au>Feldmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>936</spage><epage>943</epage><pages>936-943</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3071220</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6698-5541</orcidid><orcidid>https://orcid.org/0000-0003-3814-6403</orcidid><orcidid>https://orcid.org/0000-0002-2372-164X</orcidid><orcidid>https://orcid.org/0000-0002-8744-2105</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2021-07, Vol.11 (4), p.936-943 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_9419956 |
source | IEEE Electronic Library (IEL) |
subjects | Amorphous silicon Annealing Annealing furnaces Boron Carbon content Conductivity Diffusion layers Electric contacts Energy conversion efficiency Inline plasma-enhanced chemical vapor deposition (PECVD) Open circuit voltage Optimization passivating and carrier-selective contacts Passivation Photovoltaic cells Plasma enhanced chemical vapor deposition poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content> Silicon Silicon carbide Silicon oxides silicon solar cells Solar cells Thin films TOPCon |
title | Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Intrinsic%20Silicon%20Layer%20and%20Intermediate%20Silicon%20Oxide%20Layer%20on%20the%20Performance%20of%20Inline%20PECVD%20Deposited%20Boron-Doped%20TOPCon&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Harter,%20Angelika&rft.date=2021-07-01&rft.volume=11&rft.issue=4&rft.spage=936&rft.epage=943&rft.pages=936-943&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3071220&rft_dat=%3Cproquest_RIE%3E2544298935%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544298935&rft_id=info:pmid/&rft_ieee_id=9419956&rfr_iscdi=true |