Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon

In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2021-07, Vol.11 (4), p.936-943
Hauptverfasser: Harter, Angelika, Polzin, Jana-Isabelle, Tutsch, Leonard, Temmler, Jan, Hofmann, Marc, Moldovan, Anamaria, Feldmann, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 943
container_issue 4
container_start_page 936
container_title IEEE journal of photovoltaics
container_volume 11
creator Harter, Angelika
Polzin, Jana-Isabelle
Tutsch, Leonard
Temmler, Jan
Hofmann, Marc
Moldovan, Anamaria
Feldmann, Frank
description In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.
doi_str_mv 10.1109/JPHOTOV.2021.3071220
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9419956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419956</ieee_id><sourcerecordid>2544298935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</originalsourceid><addsrcrecordid>eNo9UF1LwzAULaLgmPsF-lDwuTMfbdo8ajfdZNCBc68lTW4xo0tq2oH7Cf5rM1Z3CdyTnHPuJScIHjCaYoz40_t6UWyK7ZQggqcUpZgQdBWMCE5YRGNEr_8xzfBtMOm6HfLFUMJYPAp-l6ZuDmAkhLYOl6Z32nRahh-60dKacCWO4EJh1IkDtwelRQ8XuvjRCgaRv_ZfEK7B1dbtxWVko41_nefbWTiD1na6BxW-WGdNNLOtx5tinVtzF9zUoulgMvRx8Pk63-SLaFW8LfPnVSQJ532U1VBRpKo4Bv_RTKqKIZZlnIPnk1qlPK04QopiSaCSFAl_0gwwUakQwOg4eDzPbZ39PkDXlzt7cMavLEkSx4RnnCZeFZ9V0tmuc1CXrdN74Y4lRuUp93LIvTzlXg65e9v92aYB4GLhMeY8YfQP4iF_qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544298935</pqid></control><display><type>article</type><title>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</title><source>IEEE Electronic Library (IEL)</source><creator>Harter, Angelika ; Polzin, Jana-Isabelle ; Tutsch, Leonard ; Temmler, Jan ; Hofmann, Marc ; Moldovan, Anamaria ; Feldmann, Frank</creator><creatorcontrib>Harter, Angelika ; Polzin, Jana-Isabelle ; Tutsch, Leonard ; Temmler, Jan ; Hofmann, Marc ; Moldovan, Anamaria ; Feldmann, Frank</creatorcontrib><description>In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3071220</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><![CDATA[Amorphous silicon ; Annealing ; Annealing furnaces ; Boron ; Carbon content ; Conductivity ; Diffusion layers ; Electric contacts ; Energy conversion efficiency ; Inline plasma-enhanced chemical vapor deposition (PECVD) ; Open circuit voltage ; Optimization ; passivating and carrier-selective contacts ; Passivation ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content> ; Silicon ; Silicon carbide ; Silicon oxides ; silicon solar cells ; Solar cells ; Thin films ; TOPCon]]></subject><ispartof>IEEE journal of photovoltaics, 2021-07, Vol.11 (4), p.936-943</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</citedby><cites>FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</cites><orcidid>0000-0001-6698-5541 ; 0000-0003-3814-6403 ; 0000-0002-2372-164X ; 0000-0002-8744-2105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harter, Angelika</creatorcontrib><creatorcontrib>Polzin, Jana-Isabelle</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Temmler, Jan</creatorcontrib><creatorcontrib>Hofmann, Marc</creatorcontrib><creatorcontrib>Moldovan, Anamaria</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><title>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.</description><subject>Amorphous silicon</subject><subject>Annealing</subject><subject>Annealing furnaces</subject><subject>Boron</subject><subject>Carbon content</subject><subject>Conductivity</subject><subject>Diffusion layers</subject><subject>Electric contacts</subject><subject>Energy conversion efficiency</subject><subject>Inline plasma-enhanced chemical vapor deposition (PECVD)</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>passivating and carrier-selective contacts</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject><![CDATA[poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content>]]></subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Silicon oxides</subject><subject>silicon solar cells</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>TOPCon</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAULaLgmPsF-lDwuTMfbdo8ajfdZNCBc68lTW4xo0tq2oH7Cf5rM1Z3CdyTnHPuJScIHjCaYoz40_t6UWyK7ZQggqcUpZgQdBWMCE5YRGNEr_8xzfBtMOm6HfLFUMJYPAp-l6ZuDmAkhLYOl6Z32nRahh-60dKacCWO4EJh1IkDtwelRQ8XuvjRCgaRv_ZfEK7B1dbtxWVko41_nefbWTiD1na6BxW-WGdNNLOtx5tinVtzF9zUoulgMvRx8Pk63-SLaFW8LfPnVSQJ532U1VBRpKo4Bv_RTKqKIZZlnIPnk1qlPK04QopiSaCSFAl_0gwwUakQwOg4eDzPbZ39PkDXlzt7cMavLEkSx4RnnCZeFZ9V0tmuc1CXrdN74Y4lRuUp93LIvTzlXg65e9v92aYB4GLhMeY8YfQP4iF_qg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Harter, Angelika</creator><creator>Polzin, Jana-Isabelle</creator><creator>Tutsch, Leonard</creator><creator>Temmler, Jan</creator><creator>Hofmann, Marc</creator><creator>Moldovan, Anamaria</creator><creator>Feldmann, Frank</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6698-5541</orcidid><orcidid>https://orcid.org/0000-0003-3814-6403</orcidid><orcidid>https://orcid.org/0000-0002-2372-164X</orcidid><orcidid>https://orcid.org/0000-0002-8744-2105</orcidid></search><sort><creationdate>20210701</creationdate><title>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</title><author>Harter, Angelika ; Polzin, Jana-Isabelle ; Tutsch, Leonard ; Temmler, Jan ; Hofmann, Marc ; Moldovan, Anamaria ; Feldmann, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-8feb30db44e2208cdb6068899ec295fd797b900d31c2ebc30a30a78e12d7aae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous silicon</topic><topic>Annealing</topic><topic>Annealing furnaces</topic><topic>Boron</topic><topic>Carbon content</topic><topic>Conductivity</topic><topic>Diffusion layers</topic><topic>Electric contacts</topic><topic>Energy conversion efficiency</topic><topic>Inline plasma-enhanced chemical vapor deposition (PECVD)</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>passivating and carrier-selective contacts</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic><![CDATA[poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content>]]></topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Silicon oxides</topic><topic>silicon solar cells</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>TOPCon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harter, Angelika</creatorcontrib><creatorcontrib>Polzin, Jana-Isabelle</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Temmler, Jan</creatorcontrib><creatorcontrib>Hofmann, Marc</creatorcontrib><creatorcontrib>Moldovan, Anamaria</creatorcontrib><creatorcontrib>Feldmann, Frank</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harter, Angelika</au><au>Polzin, Jana-Isabelle</au><au>Tutsch, Leonard</au><au>Temmler, Jan</au><au>Hofmann, Marc</au><au>Moldovan, Anamaria</au><au>Feldmann, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>936</spage><epage>943</epage><pages>936-943</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>In this article, the development and optimization of carrier-selective and passivating contacts by industry-scale inline plasma-enhanced chemical vapor deposition and their successful integration into solar cells are reported. Amorphous Si thin films with varying carbon content (SiC x ) were deposited on a thermally grown ultrathin tunnel oxide (TOPCon) and electrically characterized. Furthermore, the impact of a vacuum break (VB) during the deposition of a layer stack consisting of intrinsic amorphous Si [a-Si:H(i)] and boron-doped SiC x was investigated. That is, samples that were processed with VB were exposed to ambient air, and hence, a thin native oxide was formed on the a-Si:H(i) layer, which affected the boron diffusion into the absorber resulting in a distinct anneal behavior of the contacts. Upon optimization, these layers provided an excellent surface passivation quality, which was reflected in an implied open-circuit voltage of 733 mV for n-type and 716 mV for p-type TOPCon structures, respectively. In addition, very low contact resistivities of 0.3 mΩ⋅cm² for n-type and 0.5 mΩ⋅cm² for p-type TOPCon were measured, respectively. These optimized TOPCon structures were implemented into both sides contacted p-type laboratory solar cells. After a two-step furnace anneal, these cells achieved a maximum energy conversion efficiency of 22.7% with evaporated contacts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3071220</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6698-5541</orcidid><orcidid>https://orcid.org/0000-0003-3814-6403</orcidid><orcidid>https://orcid.org/0000-0002-2372-164X</orcidid><orcidid>https://orcid.org/0000-0002-8744-2105</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2021-07, Vol.11 (4), p.936-943
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_9419956
source IEEE Electronic Library (IEL)
subjects Amorphous silicon
Annealing
Annealing furnaces
Boron
Carbon content
Conductivity
Diffusion layers
Electric contacts
Energy conversion efficiency
Inline plasma-enhanced chemical vapor deposition (PECVD)
Open circuit voltage
Optimization
passivating and carrier-selective contacts
Passivation
Photovoltaic cells
Plasma enhanced chemical vapor deposition
poly-SiC<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _x</tex-math> </inline-formula> </named-content>
Silicon
Silicon carbide
Silicon oxides
silicon solar cells
Solar cells
Thin films
TOPCon
title Influence of Intrinsic Silicon Layer and Intermediate Silicon Oxide Layer on the Performance of Inline PECVD Deposited Boron-Doped TOPCon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Intrinsic%20Silicon%20Layer%20and%20Intermediate%20Silicon%20Oxide%20Layer%20on%20the%20Performance%20of%20Inline%20PECVD%20Deposited%20Boron-Doped%20TOPCon&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Harter,%20Angelika&rft.date=2021-07-01&rft.volume=11&rft.issue=4&rft.spage=936&rft.epage=943&rft.pages=936-943&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3071220&rft_dat=%3Cproquest_RIE%3E2544298935%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544298935&rft_id=info:pmid/&rft_ieee_id=9419956&rfr_iscdi=true