Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis

One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.69173-69188
Hauptverfasser: Hoyos, J. D., Villa-Tamayo, M. F., Builes-Montano, C. E., Ramirez-Rincon, A., Godoy, J. L., Garcia-Tirado, J., Rivadeneira, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69188
container_issue
container_start_page 69173
container_title IEEE access
container_volume 9
creator Hoyos, J. D.
Villa-Tamayo, M. F.
Builes-Montano, C. E.
Ramirez-Rincon, A.
Godoy, J. L.
Garcia-Tirado, J.
Rivadeneira, P. S.
description One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of them are globally identifiable and observable at the same time. Thus, a general proposal was developed to encompass four linear models according to suitable assumptions and transformations. After the corresponding structural properties analysis, two minimal model structures are generated, which are globally identifiable and observable. Then, the practical identifiability is analyzed for this application showing that the standard collected data in many cases do not have the necessary quality to ensure a unique solution in the identification process even when a considerable amount of data is collected. The two minimal control-oriented models were identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation window was considered long enough for future artificial pancreas applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction models in model-based control strategies as predictive control.
doi_str_mv 10.1109/ACCESS.2021.3076405
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9417219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9417219</ieee_id><doaj_id>oai_doaj_org_article_8705c526ba8746be93d92623c86b6b91</doaj_id><sourcerecordid>2526965481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c0dd8a8277f38f7f3df2a7f5adab9332cdcbf36c44096006dcef2d6e3570da913</originalsourceid><addsrcrecordid>eNpNUdtKw0AQDaJgUb-gLwGfU_eS7MW3EqoWKgVvr8tmd1a2xGzdTZX-vakp4jzMDGfmnGE4WTbFaIYxkjfzul48P88IInhGEWclqk6yCcFMFrSi7PRff55dpbRBQ4gBqvgke1ta6HrvvG586_t9Hlxeh66PoS3W0Q8zsPl9uzMhQbHs0q71Xb7yHeiYPwYLbbrNn-DLw3euO5vPO93uk0-X2ZnTbYKrY73IXu8WL_VDsVrfL-v5qjAlEn1hkLVCC8K5o8INyTqiuau01Y2klBhrGkeZKUskGULMGnDEMqAVR1ZLTC-y5ahrg96obfQfOu5V0F79AiG-Kx17b1pQgqPKVIQ1WvCSNSCplYQRagRrWPOrdT1qbWP43EHq1Sbs4vBQUmTgSVaV4rBFxy0TQ0oR3N9VjNTBDzX6oQ5-qKMfA2s6sjwA_DFkiTnBkv4AkQ-GZw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526965481</pqid></control><display><type>article</type><title>Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hoyos, J. D. ; Villa-Tamayo, M. F. ; Builes-Montano, C. E. ; Ramirez-Rincon, A. ; Godoy, J. L. ; Garcia-Tirado, J. ; Rivadeneira, P. S.</creator><creatorcontrib>Hoyos, J. D. ; Villa-Tamayo, M. F. ; Builes-Montano, C. E. ; Ramirez-Rincon, A. ; Godoy, J. L. ; Garcia-Tirado, J. ; Rivadeneira, P. S.</creatorcontrib><description>One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of them are globally identifiable and observable at the same time. Thus, a general proposal was developed to encompass four linear models according to suitable assumptions and transformations. After the corresponding structural properties analysis, two minimal model structures are generated, which are globally identifiable and observable. Then, the practical identifiability is analyzed for this application showing that the standard collected data in many cases do not have the necessary quality to ensure a unique solution in the identification process even when a considerable amount of data is collected. The two minimal control-oriented models were identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation window was considered long enough for future artificial pancreas applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction models in model-based control strategies as predictive control.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3076405</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; biomedical systems ; Data collection ; Data models ; Diabetes ; Glucose ; Glucose dynamics ; identifiability ; Insulin ; Mathematical model ; model identification ; Pancreas ; practical indentifiability ; Prediction models ; Predictive control ; Predictive models</subject><ispartof>IEEE access, 2021, Vol.9, p.69173-69188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c0dd8a8277f38f7f3df2a7f5adab9332cdcbf36c44096006dcef2d6e3570da913</citedby><cites>FETCH-LOGICAL-c408t-c0dd8a8277f38f7f3df2a7f5adab9332cdcbf36c44096006dcef2d6e3570da913</cites><orcidid>0000-0002-5649-069X ; 0000-0002-5981-4370 ; 0000-0001-8392-4556 ; 0000-0002-9970-2162 ; 0000-0002-2418-6159 ; 0000-0002-0839-4070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9417219$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hoyos, J. D.</creatorcontrib><creatorcontrib>Villa-Tamayo, M. F.</creatorcontrib><creatorcontrib>Builes-Montano, C. E.</creatorcontrib><creatorcontrib>Ramirez-Rincon, A.</creatorcontrib><creatorcontrib>Godoy, J. L.</creatorcontrib><creatorcontrib>Garcia-Tirado, J.</creatorcontrib><creatorcontrib>Rivadeneira, P. S.</creatorcontrib><title>Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of them are globally identifiable and observable at the same time. Thus, a general proposal was developed to encompass four linear models according to suitable assumptions and transformations. After the corresponding structural properties analysis, two minimal model structures are generated, which are globally identifiable and observable. Then, the practical identifiability is analyzed for this application showing that the standard collected data in many cases do not have the necessary quality to ensure a unique solution in the identification process even when a considerable amount of data is collected. The two minimal control-oriented models were identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation window was considered long enough for future artificial pancreas applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction models in model-based control strategies as predictive control.</description><subject>Analytical models</subject><subject>biomedical systems</subject><subject>Data collection</subject><subject>Data models</subject><subject>Diabetes</subject><subject>Glucose</subject><subject>Glucose dynamics</subject><subject>identifiability</subject><subject>Insulin</subject><subject>Mathematical model</subject><subject>model identification</subject><subject>Pancreas</subject><subject>practical indentifiability</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Predictive models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKw0AQDaJgUb-gLwGfU_eS7MW3EqoWKgVvr8tmd1a2xGzdTZX-vakp4jzMDGfmnGE4WTbFaIYxkjfzul48P88IInhGEWclqk6yCcFMFrSi7PRff55dpbRBQ4gBqvgke1ta6HrvvG586_t9Hlxeh66PoS3W0Q8zsPl9uzMhQbHs0q71Xb7yHeiYPwYLbbrNn-DLw3euO5vPO93uk0-X2ZnTbYKrY73IXu8WL_VDsVrfL-v5qjAlEn1hkLVCC8K5o8INyTqiuau01Y2klBhrGkeZKUskGULMGnDEMqAVR1ZLTC-y5ahrg96obfQfOu5V0F79AiG-Kx17b1pQgqPKVIQ1WvCSNSCplYQRagRrWPOrdT1qbWP43EHq1Sbs4vBQUmTgSVaV4rBFxy0TQ0oR3N9VjNTBDzX6oQ5-qKMfA2s6sjwA_DFkiTnBkv4AkQ-GZw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hoyos, J. D.</creator><creator>Villa-Tamayo, M. F.</creator><creator>Builes-Montano, C. E.</creator><creator>Ramirez-Rincon, A.</creator><creator>Godoy, J. L.</creator><creator>Garcia-Tirado, J.</creator><creator>Rivadeneira, P. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5649-069X</orcidid><orcidid>https://orcid.org/0000-0002-5981-4370</orcidid><orcidid>https://orcid.org/0000-0001-8392-4556</orcidid><orcidid>https://orcid.org/0000-0002-9970-2162</orcidid><orcidid>https://orcid.org/0000-0002-2418-6159</orcidid><orcidid>https://orcid.org/0000-0002-0839-4070</orcidid></search><sort><creationdate>2021</creationdate><title>Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis</title><author>Hoyos, J. D. ; Villa-Tamayo, M. F. ; Builes-Montano, C. E. ; Ramirez-Rincon, A. ; Godoy, J. L. ; Garcia-Tirado, J. ; Rivadeneira, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c0dd8a8277f38f7f3df2a7f5adab9332cdcbf36c44096006dcef2d6e3570da913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>biomedical systems</topic><topic>Data collection</topic><topic>Data models</topic><topic>Diabetes</topic><topic>Glucose</topic><topic>Glucose dynamics</topic><topic>identifiability</topic><topic>Insulin</topic><topic>Mathematical model</topic><topic>model identification</topic><topic>Pancreas</topic><topic>practical indentifiability</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Predictive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoyos, J. D.</creatorcontrib><creatorcontrib>Villa-Tamayo, M. F.</creatorcontrib><creatorcontrib>Builes-Montano, C. E.</creatorcontrib><creatorcontrib>Ramirez-Rincon, A.</creatorcontrib><creatorcontrib>Godoy, J. L.</creatorcontrib><creatorcontrib>Garcia-Tirado, J.</creatorcontrib><creatorcontrib>Rivadeneira, P. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoyos, J. D.</au><au>Villa-Tamayo, M. F.</au><au>Builes-Montano, C. E.</au><au>Ramirez-Rincon, A.</au><au>Godoy, J. L.</au><au>Garcia-Tirado, J.</au><au>Rivadeneira, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>69173</spage><epage>69188</epage><pages>69173-69188</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of them are globally identifiable and observable at the same time. Thus, a general proposal was developed to encompass four linear models according to suitable assumptions and transformations. After the corresponding structural properties analysis, two minimal model structures are generated, which are globally identifiable and observable. Then, the practical identifiability is analyzed for this application showing that the standard collected data in many cases do not have the necessary quality to ensure a unique solution in the identification process even when a considerable amount of data is collected. The two minimal control-oriented models were identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation window was considered long enough for future artificial pancreas applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction models in model-based control strategies as predictive control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3076405</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5649-069X</orcidid><orcidid>https://orcid.org/0000-0002-5981-4370</orcidid><orcidid>https://orcid.org/0000-0001-8392-4556</orcidid><orcidid>https://orcid.org/0000-0002-9970-2162</orcidid><orcidid>https://orcid.org/0000-0002-2418-6159</orcidid><orcidid>https://orcid.org/0000-0002-0839-4070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.69173-69188
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9417219
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analytical models
biomedical systems
Data collection
Data models
Diabetes
Glucose
Glucose dynamics
identifiability
Insulin
Mathematical model
model identification
Pancreas
practical indentifiability
Prediction models
Predictive control
Predictive models
title Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifiability%20of%20Control-Oriented%20Glucose-Insulin%20Linear%20Models:%20Review%20and%20Analysis&rft.jtitle=IEEE%20access&rft.au=Hoyos,%20J.%20D.&rft.date=2021&rft.volume=9&rft.spage=69173&rft.epage=69188&rft.pages=69173-69188&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3076405&rft_dat=%3Cproquest_ieee_%3E2526965481%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526965481&rft_id=info:pmid/&rft_ieee_id=9417219&rft_doaj_id=oai_doaj_org_article_8705c526ba8746be93d92623c86b6b91&rfr_iscdi=true