Artificial Neural Network-Based System for Location of Structural Faults on Anchor Rods Using Input Impedance Response

Structural faults on anchor rods due to corrosive processes are among the major natural causes worldwide for the collapse of guyed towers. As such towers are widely used on both power transmission lines and antenna systems, their collapse may cause unexpected interruptions of telecommunications and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2021-07, Vol.57 (7), p.1-4
Hauptverfasser: Barbosa, D. C. P., de Medeiros, L. H. A., de Melo, M. T., Lourenco Novo, L. R. G. S., Coutinho, M. S., Alves, M. M., dos Santos, R. G. M., Tarrago, V. L., Lott Neto, H. B. D. T., Gama, P. H. R. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 7
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 57
creator Barbosa, D. C. P.
de Medeiros, L. H. A.
de Melo, M. T.
Lourenco Novo, L. R. G. S.
Coutinho, M. S.
Alves, M. M.
dos Santos, R. G. M.
Tarrago, V. L.
Lott Neto, H. B. D. T.
Gama, P. H. R. P.
description Structural faults on anchor rods due to corrosive processes are among the major natural causes worldwide for the collapse of guyed towers. As such towers are widely used on both power transmission lines and antenna systems, their collapse may cause unexpected interruptions of telecommunications and power delivery services. Despite being of utmost importance, underground corrosion monitoring is still a technological challenge, because it is a highly nonlinear problem, influenced by several soil characteristics and its complex iterations with the metallic structure of the rods. Some techniques have already been proposed to locate such faults; however, either they require previous knowledge about the medium or they need the interpretation of the acquired signal by a human specialist. These requirements make it difficult to use such solutions in automatic monitoring as well as to make their integration with Internet of Things (IoT) systems. In this article, a novel technique is proposed to automatically locate structural faults on anchor rods, based on a two-step machine learning (ML) solution. The system is fed by a vector composed of frequency-domain samples of the input impedance electromagnetic (EM) signals measured on the rods through a dedicated designed connector. Experimental results have demonstrated that the proposed combination of EM signal acquisition and ML data processing was able to perform the fault location on anchor rods accurately and with a total independence of any additional human analysis.
doi_str_mv 10.1109/TMAG.2021.3076013
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9416574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416574</ieee_id><sourcerecordid>2544298657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f348388859c6c9a4fe98d74ca8e751e1611d0eeedc3e1db3f847151509d0c3f03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NbLK7ybGKH4WqoO15idmJbm03a5JV_PemVjy9zPDMvPAQcgpsAsDUxeJ-ejvJWQ4TzqqSAd8jI1ACMsZKtU9GjIHMlCjFITkKYZVGUQAbkc-pj61tTavX9AEH_xvxy_n37FIHbOjzd4i4odZ5OndGx9Z11Fn6HP1g4i9_o4d1DDTtp515S9yTawJdhrZ7pbOuHyKdbXpsdGeQPmHoXRfwmBxYvQ548pdjsry5XlzdZfPH29nVdJ6ZXPGYWS4kl1IWypRGaWFRyaYSRkusCkAoARqGiI3hCM0Lt1JUUEDBVMMMt4yPyfnub-_dx4Ah1is3-C5V1nkhRK5kWVSJgh1lvAvBo6173260_66B1Vu99VZvvdVb_-lNN2e7mzb1__PJeHoo-A9HxncX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544298657</pqid></control><display><type>article</type><title>Artificial Neural Network-Based System for Location of Structural Faults on Anchor Rods Using Input Impedance Response</title><source>IEEE Electronic Library Online</source><creator>Barbosa, D. C. P. ; de Medeiros, L. H. A. ; de Melo, M. T. ; Lourenco Novo, L. R. G. S. ; Coutinho, M. S. ; Alves, M. M. ; dos Santos, R. G. M. ; Tarrago, V. L. ; Lott Neto, H. B. D. T. ; Gama, P. H. R. P.</creator><creatorcontrib>Barbosa, D. C. P. ; de Medeiros, L. H. A. ; de Melo, M. T. ; Lourenco Novo, L. R. G. S. ; Coutinho, M. S. ; Alves, M. M. ; dos Santos, R. G. M. ; Tarrago, V. L. ; Lott Neto, H. B. D. T. ; Gama, P. H. R. P.</creatorcontrib><description>Structural faults on anchor rods due to corrosive processes are among the major natural causes worldwide for the collapse of guyed towers. As such towers are widely used on both power transmission lines and antenna systems, their collapse may cause unexpected interruptions of telecommunications and power delivery services. Despite being of utmost importance, underground corrosion monitoring is still a technological challenge, because it is a highly nonlinear problem, influenced by several soil characteristics and its complex iterations with the metallic structure of the rods. Some techniques have already been proposed to locate such faults; however, either they require previous knowledge about the medium or they need the interpretation of the acquired signal by a human specialist. These requirements make it difficult to use such solutions in automatic monitoring as well as to make their integration with Internet of Things (IoT) systems. In this article, a novel technique is proposed to automatically locate structural faults on anchor rods, based on a two-step machine learning (ML) solution. The system is fed by a vector composed of frequency-domain samples of the input impedance electromagnetic (EM) signals measured on the rods through a dedicated designed connector. Experimental results have demonstrated that the proposed combination of EM signal acquisition and ML data processing was able to perform the fault location on anchor rods accurately and with a total independence of any additional human analysis.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3076013</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Collapse ; Computational modeling ; Computer simulation ; Connectors ; Data processing ; Delivery services ; electromagnetic (EM) measurement ; Fault location ; Input impedance ; Internet of Things ; Machine learning ; machine learning (ML) ; Magnetism ; Monitoring ; Poles and towers ; Power lines ; Radio frequency ; Rods ; Signal processing ; Towers ; Training ; Transmission line measurements ; Underground corrosion</subject><ispartof>IEEE transactions on magnetics, 2021-07, Vol.57 (7), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f348388859c6c9a4fe98d74ca8e751e1611d0eeedc3e1db3f847151509d0c3f03</citedby><cites>FETCH-LOGICAL-c293t-f348388859c6c9a4fe98d74ca8e751e1611d0eeedc3e1db3f847151509d0c3f03</cites><orcidid>0000-0002-2372-9051 ; 0000-0002-6786-0916 ; 0000-0003-4462-3106 ; 0000-0002-6582-8533 ; 0000-0002-2459-1533 ; 0000-0001-6339-536X ; 0000-0002-7609-1127 ; 0000-0003-1233-5046 ; 0000-0002-2850-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9416574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barbosa, D. C. P.</creatorcontrib><creatorcontrib>de Medeiros, L. H. A.</creatorcontrib><creatorcontrib>de Melo, M. T.</creatorcontrib><creatorcontrib>Lourenco Novo, L. R. G. S.</creatorcontrib><creatorcontrib>Coutinho, M. S.</creatorcontrib><creatorcontrib>Alves, M. M.</creatorcontrib><creatorcontrib>dos Santos, R. G. M.</creatorcontrib><creatorcontrib>Tarrago, V. L.</creatorcontrib><creatorcontrib>Lott Neto, H. B. D. T.</creatorcontrib><creatorcontrib>Gama, P. H. R. P.</creatorcontrib><title>Artificial Neural Network-Based System for Location of Structural Faults on Anchor Rods Using Input Impedance Response</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Structural faults on anchor rods due to corrosive processes are among the major natural causes worldwide for the collapse of guyed towers. As such towers are widely used on both power transmission lines and antenna systems, their collapse may cause unexpected interruptions of telecommunications and power delivery services. Despite being of utmost importance, underground corrosion monitoring is still a technological challenge, because it is a highly nonlinear problem, influenced by several soil characteristics and its complex iterations with the metallic structure of the rods. Some techniques have already been proposed to locate such faults; however, either they require previous knowledge about the medium or they need the interpretation of the acquired signal by a human specialist. These requirements make it difficult to use such solutions in automatic monitoring as well as to make their integration with Internet of Things (IoT) systems. In this article, a novel technique is proposed to automatically locate structural faults on anchor rods, based on a two-step machine learning (ML) solution. The system is fed by a vector composed of frequency-domain samples of the input impedance electromagnetic (EM) signals measured on the rods through a dedicated designed connector. Experimental results have demonstrated that the proposed combination of EM signal acquisition and ML data processing was able to perform the fault location on anchor rods accurately and with a total independence of any additional human analysis.</description><subject>Artificial neural networks</subject><subject>Collapse</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Connectors</subject><subject>Data processing</subject><subject>Delivery services</subject><subject>electromagnetic (EM) measurement</subject><subject>Fault location</subject><subject>Input impedance</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Magnetism</subject><subject>Monitoring</subject><subject>Poles and towers</subject><subject>Power lines</subject><subject>Radio frequency</subject><subject>Rods</subject><subject>Signal processing</subject><subject>Towers</subject><subject>Training</subject><subject>Transmission line measurements</subject><subject>Underground corrosion</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NbLK7ybGKH4WqoO15idmJbm03a5JV_PemVjy9zPDMvPAQcgpsAsDUxeJ-ejvJWQ4TzqqSAd8jI1ACMsZKtU9GjIHMlCjFITkKYZVGUQAbkc-pj61tTavX9AEH_xvxy_n37FIHbOjzd4i4odZ5OndGx9Z11Fn6HP1g4i9_o4d1DDTtp515S9yTawJdhrZ7pbOuHyKdbXpsdGeQPmHoXRfwmBxYvQ548pdjsry5XlzdZfPH29nVdJ6ZXPGYWS4kl1IWypRGaWFRyaYSRkusCkAoARqGiI3hCM0Lt1JUUEDBVMMMt4yPyfnub-_dx4Ah1is3-C5V1nkhRK5kWVSJgh1lvAvBo6173260_66B1Vu99VZvvdVb_-lNN2e7mzb1__PJeHoo-A9HxncX</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Barbosa, D. C. P.</creator><creator>de Medeiros, L. H. A.</creator><creator>de Melo, M. T.</creator><creator>Lourenco Novo, L. R. G. S.</creator><creator>Coutinho, M. S.</creator><creator>Alves, M. M.</creator><creator>dos Santos, R. G. M.</creator><creator>Tarrago, V. L.</creator><creator>Lott Neto, H. B. D. T.</creator><creator>Gama, P. H. R. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2372-9051</orcidid><orcidid>https://orcid.org/0000-0002-6786-0916</orcidid><orcidid>https://orcid.org/0000-0003-4462-3106</orcidid><orcidid>https://orcid.org/0000-0002-6582-8533</orcidid><orcidid>https://orcid.org/0000-0002-2459-1533</orcidid><orcidid>https://orcid.org/0000-0001-6339-536X</orcidid><orcidid>https://orcid.org/0000-0002-7609-1127</orcidid><orcidid>https://orcid.org/0000-0003-1233-5046</orcidid><orcidid>https://orcid.org/0000-0002-2850-2163</orcidid></search><sort><creationdate>20210701</creationdate><title>Artificial Neural Network-Based System for Location of Structural Faults on Anchor Rods Using Input Impedance Response</title><author>Barbosa, D. C. P. ; de Medeiros, L. H. A. ; de Melo, M. T. ; Lourenco Novo, L. R. G. S. ; Coutinho, M. S. ; Alves, M. M. ; dos Santos, R. G. M. ; Tarrago, V. L. ; Lott Neto, H. B. D. T. ; Gama, P. H. R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f348388859c6c9a4fe98d74ca8e751e1611d0eeedc3e1db3f847151509d0c3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Collapse</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Connectors</topic><topic>Data processing</topic><topic>Delivery services</topic><topic>electromagnetic (EM) measurement</topic><topic>Fault location</topic><topic>Input impedance</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Magnetism</topic><topic>Monitoring</topic><topic>Poles and towers</topic><topic>Power lines</topic><topic>Radio frequency</topic><topic>Rods</topic><topic>Signal processing</topic><topic>Towers</topic><topic>Training</topic><topic>Transmission line measurements</topic><topic>Underground corrosion</topic><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, D. C. P.</creatorcontrib><creatorcontrib>de Medeiros, L. H. A.</creatorcontrib><creatorcontrib>de Melo, M. T.</creatorcontrib><creatorcontrib>Lourenco Novo, L. R. G. S.</creatorcontrib><creatorcontrib>Coutinho, M. S.</creatorcontrib><creatorcontrib>Alves, M. M.</creatorcontrib><creatorcontrib>dos Santos, R. G. M.</creatorcontrib><creatorcontrib>Tarrago, V. L.</creatorcontrib><creatorcontrib>Lott Neto, H. B. D. T.</creatorcontrib><creatorcontrib>Gama, P. H. R. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barbosa, D. C. P.</au><au>de Medeiros, L. H. A.</au><au>de Melo, M. T.</au><au>Lourenco Novo, L. R. G. S.</au><au>Coutinho, M. S.</au><au>Alves, M. M.</au><au>dos Santos, R. G. M.</au><au>Tarrago, V. L.</au><au>Lott Neto, H. B. D. T.</au><au>Gama, P. H. R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network-Based System for Location of Structural Faults on Anchor Rods Using Input Impedance Response</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>57</volume><issue>7</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Structural faults on anchor rods due to corrosive processes are among the major natural causes worldwide for the collapse of guyed towers. As such towers are widely used on both power transmission lines and antenna systems, their collapse may cause unexpected interruptions of telecommunications and power delivery services. Despite being of utmost importance, underground corrosion monitoring is still a technological challenge, because it is a highly nonlinear problem, influenced by several soil characteristics and its complex iterations with the metallic structure of the rods. Some techniques have already been proposed to locate such faults; however, either they require previous knowledge about the medium or they need the interpretation of the acquired signal by a human specialist. These requirements make it difficult to use such solutions in automatic monitoring as well as to make their integration with Internet of Things (IoT) systems. In this article, a novel technique is proposed to automatically locate structural faults on anchor rods, based on a two-step machine learning (ML) solution. The system is fed by a vector composed of frequency-domain samples of the input impedance electromagnetic (EM) signals measured on the rods through a dedicated designed connector. Experimental results have demonstrated that the proposed combination of EM signal acquisition and ML data processing was able to perform the fault location on anchor rods accurately and with a total independence of any additional human analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2021.3076013</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2372-9051</orcidid><orcidid>https://orcid.org/0000-0002-6786-0916</orcidid><orcidid>https://orcid.org/0000-0003-4462-3106</orcidid><orcidid>https://orcid.org/0000-0002-6582-8533</orcidid><orcidid>https://orcid.org/0000-0002-2459-1533</orcidid><orcidid>https://orcid.org/0000-0001-6339-536X</orcidid><orcidid>https://orcid.org/0000-0002-7609-1127</orcidid><orcidid>https://orcid.org/0000-0003-1233-5046</orcidid><orcidid>https://orcid.org/0000-0002-2850-2163</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2021-07, Vol.57 (7), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_9416574
source IEEE Electronic Library Online
subjects Artificial neural networks
Collapse
Computational modeling
Computer simulation
Connectors
Data processing
Delivery services
electromagnetic (EM) measurement
Fault location
Input impedance
Internet of Things
Machine learning
machine learning (ML)
Magnetism
Monitoring
Poles and towers
Power lines
Radio frequency
Rods
Signal processing
Towers
Training
Transmission line measurements
Underground corrosion
title Artificial Neural Network-Based System for Location of Structural Faults on Anchor Rods Using Input Impedance Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network-Based%20System%20for%20Location%20of%20Structural%20Faults%20on%20Anchor%20Rods%20Using%20Input%20Impedance%20Response&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Barbosa,%20D.%20C.%20P.&rft.date=2021-07-01&rft.volume=57&rft.issue=7&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3076013&rft_dat=%3Cproquest_RIE%3E2544298657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544298657&rft_id=info:pmid/&rft_ieee_id=9416574&rfr_iscdi=true