Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator

A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.67117-67128
Hauptverfasser: Jie, Wang, Cheol, Lee Min, Jaehyung, Kim, Hee, Kim Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67128
container_issue
container_start_page 67117
container_title IEEE access
container_volume 9
creator Jie, Wang
Cheol, Lee Min
Jaehyung, Kim
Hee, Kim Hyun
description A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.
doi_str_mv 10.1109/ACCESS.2021.3075697
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9416452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416452</ieee_id><doaj_id>oai_doaj_org_article_bc7012b7563440939af7a246e574c55c</doaj_id><sourcerecordid>2522917128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</originalsourceid><addsrcrecordid>eNpNkU9P3DAQxSPUSiDgE3Cx1HO2_hvHR0gJRQK2Yql6tCaOTb0K663tReLSz463QavOxePRe7-R5lXVBcELQrD6etl116vVgmJKFgxL0Sh5VJ1Q0qiaCdZ8-q8_rs5TWuNSbRkJeVL97SFl1Ecw2YcNTPUyjjaiJxtffPmi1eRHv3lG92G0qAubHMOEfvn8Gz1e9Q8P6AqSHQ-qHzbmXRxgz0LLIdn4WmAuRCTrb8sePYYhZHQPG7_dTZBDPKs-O5iSPf94T6uf_fVT972-W97cdpd3teG4zTVpiBMjCDCEC6twC7bFjlsuDB2cIFIBx8xiR4zBLeMjG51qecsacMpgx06r25k7BljrbfQvEN90AK__DUJ81hCzN5PVg5GY0KHckXGOFVPgJFDeWCG5EcIU1peZtY3hz86mrNdhF8uxkqaCUkUkoW1RsVllYkgpWnfYSrDe56bn3PQ-N_2RW3FdzC5vrT04FCcNF5S9A29Qku0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522917128</pqid></control><display><type>article</type><title>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</title><source>IEEE Xplore Open Access Journals</source><source>DOAJ: Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jie, Wang ; Cheol, Lee Min ; Jaehyung, Kim ; Hee, Kim Hyun</creator><creatorcontrib>Jie, Wang ; Cheol, Lee Min ; Jaehyung, Kim ; Hee, Kim Hyun</creatorcontrib><description>A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3075697</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asymptotic stability ; Control stability ; Controllers ; Degrees of freedom ; fractional-order ; Liapunov functions ; Low-pass filters ; Manipulators ; Neural networks ; Perturbation ; Perturbation methods ; Radial basis function ; Robot arms ; Robot control ; robot manipulator ; Robots ; robust control ; Sliding mode control ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.67117-67128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</citedby><cites>FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</cites><orcidid>0000-0002-2598-1736 ; 0000-0003-4472-1267 ; 0000-0002-6160-5164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416452$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Jie, Wang</creatorcontrib><creatorcontrib>Cheol, Lee Min</creatorcontrib><creatorcontrib>Jaehyung, Kim</creatorcontrib><creatorcontrib>Hee, Kim Hyun</creatorcontrib><title>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</title><title>IEEE access</title><addtitle>Access</addtitle><description>A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.</description><subject>Asymptotic stability</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>fractional-order</subject><subject>Liapunov functions</subject><subject>Low-pass filters</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Radial basis function</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>robot manipulator</subject><subject>Robots</subject><subject>robust control</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P3DAQxSPUSiDgE3Cx1HO2_hvHR0gJRQK2Yql6tCaOTb0K663tReLSz463QavOxePRe7-R5lXVBcELQrD6etl116vVgmJKFgxL0Sh5VJ1Q0qiaCdZ8-q8_rs5TWuNSbRkJeVL97SFl1Ecw2YcNTPUyjjaiJxtffPmi1eRHv3lG92G0qAubHMOEfvn8Gz1e9Q8P6AqSHQ-qHzbmXRxgz0LLIdn4WmAuRCTrb8sePYYhZHQPG7_dTZBDPKs-O5iSPf94T6uf_fVT972-W97cdpd3teG4zTVpiBMjCDCEC6twC7bFjlsuDB2cIFIBx8xiR4zBLeMjG51qecsacMpgx06r25k7BljrbfQvEN90AK__DUJ81hCzN5PVg5GY0KHckXGOFVPgJFDeWCG5EcIU1peZtY3hz86mrNdhF8uxkqaCUkUkoW1RsVllYkgpWnfYSrDe56bn3PQ-N_2RW3FdzC5vrT04FCcNF5S9A29Qku0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jie, Wang</creator><creator>Cheol, Lee Min</creator><creator>Jaehyung, Kim</creator><creator>Hee, Kim Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2598-1736</orcidid><orcidid>https://orcid.org/0000-0003-4472-1267</orcidid><orcidid>https://orcid.org/0000-0002-6160-5164</orcidid></search><sort><creationdate>2021</creationdate><title>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</title><author>Jie, Wang ; Cheol, Lee Min ; Jaehyung, Kim ; Hee, Kim Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic stability</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>fractional-order</topic><topic>Liapunov functions</topic><topic>Low-pass filters</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Radial basis function</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>robot manipulator</topic><topic>Robots</topic><topic>robust control</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jie, Wang</creatorcontrib><creatorcontrib>Cheol, Lee Min</creatorcontrib><creatorcontrib>Jaehyung, Kim</creatorcontrib><creatorcontrib>Hee, Kim Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jie, Wang</au><au>Cheol, Lee Min</au><au>Jaehyung, Kim</au><au>Hee, Kim Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>67117</spage><epage>67128</epage><pages>67117-67128</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3075697</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2598-1736</orcidid><orcidid>https://orcid.org/0000-0003-4472-1267</orcidid><orcidid>https://orcid.org/0000-0002-6160-5164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.67117-67128
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9416452
source IEEE Xplore Open Access Journals; DOAJ: Directory of Open Access Journals; EZB Electronic Journals Library
subjects Asymptotic stability
Control stability
Controllers
Degrees of freedom
fractional-order
Liapunov functions
Low-pass filters
Manipulators
Neural networks
Perturbation
Perturbation methods
Radial basis function
Robot arms
Robot control
robot manipulator
Robots
robust control
Sliding mode control
Uncertainty
title Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Fractional-Order%20Terminal%20Sliding%20Mode%20Control%20With%20RBFNN%20Based%20Sliding%20Perturbation%20Observer%20for%207-DOF%20Robot%20Manipulator&rft.jtitle=IEEE%20access&rft.au=Jie,%20Wang&rft.date=2021&rft.volume=9&rft.spage=67117&rft.epage=67128&rft.pages=67117-67128&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3075697&rft_dat=%3Cproquest_ieee_%3E2522917128%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522917128&rft_id=info:pmid/&rft_ieee_id=9416452&rft_doaj_id=oai_doaj_org_article_bc7012b7563440939af7a246e574c55c&rfr_iscdi=true