Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator
A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The n...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.67117-67128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67128 |
---|---|
container_issue | |
container_start_page | 67117 |
container_title | IEEE access |
container_volume | 9 |
creator | Jie, Wang Cheol, Lee Min Jaehyung, Kim Hee, Kim Hyun |
description | A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems. |
doi_str_mv | 10.1109/ACCESS.2021.3075697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9416452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416452</ieee_id><doaj_id>oai_doaj_org_article_bc7012b7563440939af7a246e574c55c</doaj_id><sourcerecordid>2522917128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</originalsourceid><addsrcrecordid>eNpNkU9P3DAQxSPUSiDgE3Cx1HO2_hvHR0gJRQK2Yql6tCaOTb0K663tReLSz463QavOxePRe7-R5lXVBcELQrD6etl116vVgmJKFgxL0Sh5VJ1Q0qiaCdZ8-q8_rs5TWuNSbRkJeVL97SFl1Ecw2YcNTPUyjjaiJxtffPmi1eRHv3lG92G0qAubHMOEfvn8Gz1e9Q8P6AqSHQ-qHzbmXRxgz0LLIdn4WmAuRCTrb8sePYYhZHQPG7_dTZBDPKs-O5iSPf94T6uf_fVT972-W97cdpd3teG4zTVpiBMjCDCEC6twC7bFjlsuDB2cIFIBx8xiR4zBLeMjG51qecsacMpgx06r25k7BljrbfQvEN90AK__DUJ81hCzN5PVg5GY0KHckXGOFVPgJFDeWCG5EcIU1peZtY3hz86mrNdhF8uxkqaCUkUkoW1RsVllYkgpWnfYSrDe56bn3PQ-N_2RW3FdzC5vrT04FCcNF5S9A29Qku0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522917128</pqid></control><display><type>article</type><title>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</title><source>IEEE Xplore Open Access Journals</source><source>DOAJ: Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Jie, Wang ; Cheol, Lee Min ; Jaehyung, Kim ; Hee, Kim Hyun</creator><creatorcontrib>Jie, Wang ; Cheol, Lee Min ; Jaehyung, Kim ; Hee, Kim Hyun</creatorcontrib><description>A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3075697</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Asymptotic stability ; Control stability ; Controllers ; Degrees of freedom ; fractional-order ; Liapunov functions ; Low-pass filters ; Manipulators ; Neural networks ; Perturbation ; Perturbation methods ; Radial basis function ; Robot arms ; Robot control ; robot manipulator ; Robots ; robust control ; Sliding mode control ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.67117-67128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</citedby><cites>FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</cites><orcidid>0000-0002-2598-1736 ; 0000-0003-4472-1267 ; 0000-0002-6160-5164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416452$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Jie, Wang</creatorcontrib><creatorcontrib>Cheol, Lee Min</creatorcontrib><creatorcontrib>Jaehyung, Kim</creatorcontrib><creatorcontrib>Hee, Kim Hyun</creatorcontrib><title>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</title><title>IEEE access</title><addtitle>Access</addtitle><description>A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.</description><subject>Asymptotic stability</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>fractional-order</subject><subject>Liapunov functions</subject><subject>Low-pass filters</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Radial basis function</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>robot manipulator</subject><subject>Robots</subject><subject>robust control</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P3DAQxSPUSiDgE3Cx1HO2_hvHR0gJRQK2Yql6tCaOTb0K663tReLSz463QavOxePRe7-R5lXVBcELQrD6etl116vVgmJKFgxL0Sh5VJ1Q0qiaCdZ8-q8_rs5TWuNSbRkJeVL97SFl1Ecw2YcNTPUyjjaiJxtffPmi1eRHv3lG92G0qAubHMOEfvn8Gz1e9Q8P6AqSHQ-qHzbmXRxgz0LLIdn4WmAuRCTrb8sePYYhZHQPG7_dTZBDPKs-O5iSPf94T6uf_fVT972-W97cdpd3teG4zTVpiBMjCDCEC6twC7bFjlsuDB2cIFIBx8xiR4zBLeMjG51qecsacMpgx06r25k7BljrbfQvEN90AK__DUJ81hCzN5PVg5GY0KHckXGOFVPgJFDeWCG5EcIU1peZtY3hz86mrNdhF8uxkqaCUkUkoW1RsVllYkgpWnfYSrDe56bn3PQ-N_2RW3FdzC5vrT04FCcNF5S9A29Qku0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jie, Wang</creator><creator>Cheol, Lee Min</creator><creator>Jaehyung, Kim</creator><creator>Hee, Kim Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2598-1736</orcidid><orcidid>https://orcid.org/0000-0003-4472-1267</orcidid><orcidid>https://orcid.org/0000-0002-6160-5164</orcidid></search><sort><creationdate>2021</creationdate><title>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</title><author>Jie, Wang ; Cheol, Lee Min ; Jaehyung, Kim ; Hee, Kim Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-161f5da5ac145e908ae80f4e45c2bf5179a403e0f1cc0834d3df984836af9c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic stability</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>fractional-order</topic><topic>Liapunov functions</topic><topic>Low-pass filters</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Radial basis function</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>robot manipulator</topic><topic>Robots</topic><topic>robust control</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jie, Wang</creatorcontrib><creatorcontrib>Cheol, Lee Min</creatorcontrib><creatorcontrib>Jaehyung, Kim</creatorcontrib><creatorcontrib>Hee, Kim Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jie, Wang</au><au>Cheol, Lee Min</au><au>Jaehyung, Kim</au><au>Hee, Kim Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>67117</spage><epage>67128</epage><pages>67117-67128</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A new perturbation estimator, using radial basis function (RBF) neural networks (RBFNN) to modify the sliding perturbation observer (SPO), is proposed with the fast fractional-order terminal sliding mode control (FFOTSMC). It aims to control a seven-degree-of-freedom (7-DOF) robot manipulator. The new perturbation estimator applies the data-driven method RBFNN to compensate for the estimation error in the conventional SPO for the first time. The modified SPO estimates the perturbation, which contains the disturbance, dynamic uncertainties, and modeling errors. The estimated perturbation is used to design with the FFOTSMC, which improves the tracking accuracy and reduces the chattering. The FFOTSMC was designed using the fractional-order derivative to design the sliding surface and the reaching/law for reaching the sliding surface. In experiments on the robot, the proposed estimation method has been evaluated by comparing with the conventional SPO or only RBFNN with the same controller, FFOTSMC. The asymptotic stability of the controller with the new estimator is proved using Lyapunov functions for fractional-order systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3075697</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2598-1736</orcidid><orcidid>https://orcid.org/0000-0003-4472-1267</orcidid><orcidid>https://orcid.org/0000-0002-6160-5164</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.67117-67128 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9416452 |
source | IEEE Xplore Open Access Journals; DOAJ: Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Asymptotic stability Control stability Controllers Degrees of freedom fractional-order Liapunov functions Low-pass filters Manipulators Neural networks Perturbation Perturbation methods Radial basis function Robot arms Robot control robot manipulator Robots robust control Sliding mode control Uncertainty |
title | Fast Fractional-Order Terminal Sliding Mode Control With RBFNN Based Sliding Perturbation Observer for 7-DOF Robot Manipulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Fractional-Order%20Terminal%20Sliding%20Mode%20Control%20With%20RBFNN%20Based%20Sliding%20Perturbation%20Observer%20for%207-DOF%20Robot%20Manipulator&rft.jtitle=IEEE%20access&rft.au=Jie,%20Wang&rft.date=2021&rft.volume=9&rft.spage=67117&rft.epage=67128&rft.pages=67117-67128&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3075697&rft_dat=%3Cproquest_ieee_%3E2522917128%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522917128&rft_id=info:pmid/&rft_ieee_id=9416452&rft_doaj_id=oai_doaj_org_article_bc7012b7563440939af7a246e574c55c&rfr_iscdi=true |