Power and Rate Adaptive Pushing Over Fading Channels

Proactive caching is capable of reducing access latency and improving network throughput, thereby attracting attention from both industry and academia. However, the energy efficiency (EE) of proactive caching over fading channels has not been well studied yet. In this paper, we aim at presenting an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-10, Vol.20 (10), p.6436-6450
Hauptverfasser: Xie, Zhanyuan, Lin, Zhiyuan, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6450
container_issue 10
container_start_page 6436
container_title IEEE transactions on wireless communications
container_volume 20
creator Xie, Zhanyuan
Lin, Zhiyuan
Chen, Wei
description Proactive caching is capable of reducing access latency and improving network throughput, thereby attracting attention from both industry and academia. However, the energy efficiency (EE) of proactive caching over fading channels has not been well studied yet. In this paper, we aim at presenting an energy-efficient content pushing policy by carefully adapting the transmit rate and power in pushing and on-demand delivery phases, while assuring delivery delay constraints. To this end, the average delay, delay-outage probability, and EE are analyzed for a general adaptive pushing policy based on the saddle point approximation. According to these results, we formulate EE maximization problems under average delay and delay-outage constraints, respectively, for two special types of adaptive pushing policies, namely, opportunistic pushing and water-filling-based pushing. Due to the high complexity of the grid search for solving the formulated problems, suboptimal algorithms are presented based on gradient descent and golden section search methods. Moreover, we mathematically derive the scaling property and numerically obtain request probability and delivery delay thresholds for content pushing. Simulations show that the presented pushing policies achieve higher EE than on-demand transmissions, especially when the content item is popular and the tolerable delivery delay is small.
doi_str_mv 10.1109/TWC.2021.3073977
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9416246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9416246</ieee_id><sourcerecordid>2580100346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-aa5b2f979a7db782b0b8483a52434efddae5fb18ec8cecbe15b7275c63504eb73</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA68Q7r8xkWYKtQqFFKi6HmeTGptSkzqQV_70JKa7ugXse8BFyTyGhFLKnzUeeMGA04aB4ptQFmVApdcyY0JeD5mlMmUqvyU0IOwCqUiknRKzbH_SRbcrozXYYzUp76OoTRutj2NbNZ7Q69e-5LQedb23T4D7ckqvK7gPene-UvM-fN_lLvFwtXvPZMi44511srXSsylRmVemUZg6cFppbyQQXWJWlRVk5qrHQBRYOqXSKKVmkXIJAp_iUPI69B99-HzF0ZtcefdNPGiY1UAAu0t4Fo6vwbQgeK3Pw9Zf1v4aCGdiYno0Z2Jgzmz7yMEZqRPy3Z4KmrC_8AxNQXqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580100346</pqid></control><display><type>article</type><title>Power and Rate Adaptive Pushing Over Fading Channels</title><source>IEEE/IET Electronic Library</source><creator>Xie, Zhanyuan ; Lin, Zhiyuan ; Chen, Wei</creator><creatorcontrib>Xie, Zhanyuan ; Lin, Zhiyuan ; Chen, Wei</creatorcontrib><description>Proactive caching is capable of reducing access latency and improving network throughput, thereby attracting attention from both industry and academia. However, the energy efficiency (EE) of proactive caching over fading channels has not been well studied yet. In this paper, we aim at presenting an energy-efficient content pushing policy by carefully adapting the transmit rate and power in pushing and on-demand delivery phases, while assuring delivery delay constraints. To this end, the average delay, delay-outage probability, and EE are analyzed for a general adaptive pushing policy based on the saddle point approximation. According to these results, we formulate EE maximization problems under average delay and delay-outage constraints, respectively, for two special types of adaptive pushing policies, namely, opportunistic pushing and water-filling-based pushing. Due to the high complexity of the grid search for solving the formulated problems, suboptimal algorithms are presented based on gradient descent and golden section search methods. Moreover, we mathematically derive the scaling property and numerically obtain request probability and delivery delay thresholds for content pushing. Simulations show that the presented pushing policies achieve higher EE than on-demand transmissions, especially when the content item is popular and the tolerable delivery delay is small.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3073977</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Caching ; Channels ; Content pushing ; Delay ; delay constraints ; Delays ; Energy consumption ; Energy efficiency ; Fading ; Policies ; proactive caching ; Probability ; Pushing ; Quality of experience ; rate and power adaptation ; request delay information ; Resource management ; Saddle points ; scaling property ; Search methods ; Throughput ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-10, Vol.20 (10), p.6436-6450</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-aa5b2f979a7db782b0b8483a52434efddae5fb18ec8cecbe15b7275c63504eb73</citedby><cites>FETCH-LOGICAL-c333t-aa5b2f979a7db782b0b8483a52434efddae5fb18ec8cecbe15b7275c63504eb73</cites><orcidid>0000-0002-9066-1448 ; 0000-0001-8391-2803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9416246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9416246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Zhanyuan</creatorcontrib><creatorcontrib>Lin, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><title>Power and Rate Adaptive Pushing Over Fading Channels</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Proactive caching is capable of reducing access latency and improving network throughput, thereby attracting attention from both industry and academia. However, the energy efficiency (EE) of proactive caching over fading channels has not been well studied yet. In this paper, we aim at presenting an energy-efficient content pushing policy by carefully adapting the transmit rate and power in pushing and on-demand delivery phases, while assuring delivery delay constraints. To this end, the average delay, delay-outage probability, and EE are analyzed for a general adaptive pushing policy based on the saddle point approximation. According to these results, we formulate EE maximization problems under average delay and delay-outage constraints, respectively, for two special types of adaptive pushing policies, namely, opportunistic pushing and water-filling-based pushing. Due to the high complexity of the grid search for solving the formulated problems, suboptimal algorithms are presented based on gradient descent and golden section search methods. Moreover, we mathematically derive the scaling property and numerically obtain request probability and delivery delay thresholds for content pushing. Simulations show that the presented pushing policies achieve higher EE than on-demand transmissions, especially when the content item is popular and the tolerable delivery delay is small.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Channels</subject><subject>Content pushing</subject><subject>Delay</subject><subject>delay constraints</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Fading</subject><subject>Policies</subject><subject>proactive caching</subject><subject>Probability</subject><subject>Pushing</subject><subject>Quality of experience</subject><subject>rate and power adaptation</subject><subject>request delay information</subject><subject>Resource management</subject><subject>Saddle points</subject><subject>scaling property</subject><subject>Search methods</subject><subject>Throughput</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFb3gpuA68Q7r8xkWYKtQqFFKi6HmeTGptSkzqQV_70JKa7ugXse8BFyTyGhFLKnzUeeMGA04aB4ptQFmVApdcyY0JeD5mlMmUqvyU0IOwCqUiknRKzbH_SRbcrozXYYzUp76OoTRutj2NbNZ7Q69e-5LQedb23T4D7ckqvK7gPene-UvM-fN_lLvFwtXvPZMi44511srXSsylRmVemUZg6cFppbyQQXWJWlRVk5qrHQBRYOqXSKKVmkXIJAp_iUPI69B99-HzF0ZtcefdNPGiY1UAAu0t4Fo6vwbQgeK3Pw9Zf1v4aCGdiYno0Z2Jgzmz7yMEZqRPy3Z4KmrC_8AxNQXqQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Xie, Zhanyuan</creator><creator>Lin, Zhiyuan</creator><creator>Chen, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9066-1448</orcidid><orcidid>https://orcid.org/0000-0001-8391-2803</orcidid></search><sort><creationdate>202110</creationdate><title>Power and Rate Adaptive Pushing Over Fading Channels</title><author>Xie, Zhanyuan ; Lin, Zhiyuan ; Chen, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-aa5b2f979a7db782b0b8483a52434efddae5fb18ec8cecbe15b7275c63504eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Channels</topic><topic>Content pushing</topic><topic>Delay</topic><topic>delay constraints</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Fading</topic><topic>Policies</topic><topic>proactive caching</topic><topic>Probability</topic><topic>Pushing</topic><topic>Quality of experience</topic><topic>rate and power adaptation</topic><topic>request delay information</topic><topic>Resource management</topic><topic>Saddle points</topic><topic>scaling property</topic><topic>Search methods</topic><topic>Throughput</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhanyuan</creatorcontrib><creatorcontrib>Lin, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Zhanyuan</au><au>Lin, Zhiyuan</au><au>Chen, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power and Rate Adaptive Pushing Over Fading Channels</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-10</date><risdate>2021</risdate><volume>20</volume><issue>10</issue><spage>6436</spage><epage>6450</epage><pages>6436-6450</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Proactive caching is capable of reducing access latency and improving network throughput, thereby attracting attention from both industry and academia. However, the energy efficiency (EE) of proactive caching over fading channels has not been well studied yet. In this paper, we aim at presenting an energy-efficient content pushing policy by carefully adapting the transmit rate and power in pushing and on-demand delivery phases, while assuring delivery delay constraints. To this end, the average delay, delay-outage probability, and EE are analyzed for a general adaptive pushing policy based on the saddle point approximation. According to these results, we formulate EE maximization problems under average delay and delay-outage constraints, respectively, for two special types of adaptive pushing policies, namely, opportunistic pushing and water-filling-based pushing. Due to the high complexity of the grid search for solving the formulated problems, suboptimal algorithms are presented based on gradient descent and golden section search methods. Moreover, we mathematically derive the scaling property and numerically obtain request probability and delivery delay thresholds for content pushing. Simulations show that the presented pushing policies achieve higher EE than on-demand transmissions, especially when the content item is popular and the tolerable delivery delay is small.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3073977</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9066-1448</orcidid><orcidid>https://orcid.org/0000-0001-8391-2803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-10, Vol.20 (10), p.6436-6450
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9416246
source IEEE/IET Electronic Library
subjects Algorithms
Caching
Channels
Content pushing
Delay
delay constraints
Delays
Energy consumption
Energy efficiency
Fading
Policies
proactive caching
Probability
Pushing
Quality of experience
rate and power adaptation
request delay information
Resource management
Saddle points
scaling property
Search methods
Throughput
Wireless communication
title Power and Rate Adaptive Pushing Over Fading Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20and%20Rate%20Adaptive%20Pushing%20Over%20Fading%20Channels&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Xie,%20Zhanyuan&rft.date=2021-10&rft.volume=20&rft.issue=10&rft.spage=6436&rft.epage=6450&rft.pages=6436-6450&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3073977&rft_dat=%3Cproquest_RIE%3E2580100346%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580100346&rft_id=info:pmid/&rft_ieee_id=9416246&rfr_iscdi=true