High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography

Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional \sim ∼ 10-15 me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2021-07, Vol.43 (7), p.2206-2219
Hauptverfasser: Zhao, Yongyi, Raghuram, Ankit, Kim, Hyun K., Hielscher, Andreas H., Robinson, Jacob T., Veeraraghavan, Ashok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2219
container_issue 7
container_start_page 2206
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 43
creator Zhao, Yongyi
Raghuram, Ankit
Kim, Hyun K.
Hielscher, Andreas H.
Robinson, Jacob T.
Veeraraghavan, Ashok
description Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional \sim ∼ 10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (> \!\!50 > 50 mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.
doi_str_mv 10.1109/TPAMI.2021.3075366
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9415130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415130</ieee_id><sourcerecordid>2539351628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</originalsourceid><addsrcrecordid>eNpdkdFr2zAQxsXYWLN0_8AGw9CXPdSZpLNs6WVQ0rUNdLSMdK9Csc6Oim15ll3ofz-lycK2F53g-93H3X2EfGB0wRhVX9b3F99XC045WwAtBOT5KzJjClQKAtRrMqMs56mUXJ6QdyE8UsoyQeEtOQGQiolMzsjPG1dvkx8YfDONznfnySVin6xaU7uuTh7C7l36rvKlaZK1azH1VXrVxK4xuXRVNQVM7vrRvci-9fVg-u3zKXlTmSbg-0Odk4erb-vlTXp7d71aXtymZZxkTIUtMthYu8mwEkJxw0VVcrDWKJlbUYCwVgk08ZNZiwUFlaFSEZI2K3MKc_J179tPmxZtid04mEb3g2vN8Ky9cfpfpXNbXfsnLXlB80JGg88Hg8H_mjCMunWhxKYxHfopaC6Y5EzIeNY5OfsPffTT0MX1IgUKRLz2zpDvqXLwIQxYHYdhVO9i0y-x6V1s-hBbbPr09xrHlj85ReDjHnCIeJRVxgQDCr8BVxGchg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539351628</pqid></control><display><type>article</type><title>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yongyi ; Raghuram, Ankit ; Kim, Hyun K. ; Hielscher, Andreas H. ; Robinson, Jacob T. ; Veeraraghavan, Ashok</creator><creatorcontrib>Zhao, Yongyi ; Raghuram, Ankit ; Kim, Hyun K. ; Hielscher, Andreas H. ; Robinson, Jacob T. ; Veeraraghavan, Ashok</creatorcontrib><description><![CDATA[Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional <inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math> <mml:mo>∼</mml:mo> </mml:math> <inline-graphic xlink:href="zhao-ieq1-3075366.gif"/> </inline-formula>10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (<inline-formula><tex-math notation="LaTeX">> \!\!50</tex-math> <mml:math> <mml:mrow> <mml:mo>></mml:mo> <mml:mspace width="-0.166667em"/> <mml:mspace width="-0.166667em"/> <mml:mn>50</mml:mn> </mml:mrow> </mml:math> <inline-graphic xlink:href="zhao-ieq2-3075366.gif"/> </inline-formula> mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3075366</identifier><identifier>PMID: 33891548</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; confocal ; Detectors ; diffuse optical tomography ; fluorescence imaging ; Image reconstruction ; Image resolution ; Imaging ; Imaging techniques ; Light scattering ; Microscopes ; Multiplexing ; Optical imaging ; Photonics ; Photons ; Real time ; Scattering ; Spatial resolution ; time binning ; Time measurement ; Time-of-flight imaging ; Tomography ; Travel time ; US Department of Transportation</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-07, Vol.43 (7), p.2206-2219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</citedby><cites>FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</cites><orcidid>0000-0002-4242-6910 ; 0000-0002-3509-3054 ; 0000-0001-5043-7460 ; 0000-0001-6689-501X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9415130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yongyi</creatorcontrib><creatorcontrib>Raghuram, Ankit</creatorcontrib><creatorcontrib>Kim, Hyun K.</creatorcontrib><creatorcontrib>Hielscher, Andreas H.</creatorcontrib><creatorcontrib>Robinson, Jacob T.</creatorcontrib><creatorcontrib>Veeraraghavan, Ashok</creatorcontrib><title>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional <inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math> <mml:mo>∼</mml:mo> </mml:math> <inline-graphic xlink:href="zhao-ieq1-3075366.gif"/> </inline-formula>10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (<inline-formula><tex-math notation="LaTeX">> \!\!50</tex-math> <mml:math> <mml:mrow> <mml:mo>></mml:mo> <mml:mspace width="-0.166667em"/> <mml:mspace width="-0.166667em"/> <mml:mn>50</mml:mn> </mml:mrow> </mml:math> <inline-graphic xlink:href="zhao-ieq2-3075366.gif"/> </inline-formula> mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.]]></description><subject>Algorithms</subject><subject>confocal</subject><subject>Detectors</subject><subject>diffuse optical tomography</subject><subject>fluorescence imaging</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Light scattering</subject><subject>Microscopes</subject><subject>Multiplexing</subject><subject>Optical imaging</subject><subject>Photonics</subject><subject>Photons</subject><subject>Real time</subject><subject>Scattering</subject><subject>Spatial resolution</subject><subject>time binning</subject><subject>Time measurement</subject><subject>Time-of-flight imaging</subject><subject>Tomography</subject><subject>Travel time</subject><subject>US Department of Transportation</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkdFr2zAQxsXYWLN0_8AGw9CXPdSZpLNs6WVQ0rUNdLSMdK9Csc6Oim15ll3ofz-lycK2F53g-93H3X2EfGB0wRhVX9b3F99XC045WwAtBOT5KzJjClQKAtRrMqMs56mUXJ6QdyE8UsoyQeEtOQGQiolMzsjPG1dvkx8YfDONznfnySVin6xaU7uuTh7C7l36rvKlaZK1azH1VXrVxK4xuXRVNQVM7vrRvci-9fVg-u3zKXlTmSbg-0Odk4erb-vlTXp7d71aXtymZZxkTIUtMthYu8mwEkJxw0VVcrDWKJlbUYCwVgk08ZNZiwUFlaFSEZI2K3MKc_J179tPmxZtid04mEb3g2vN8Ky9cfpfpXNbXfsnLXlB80JGg88Hg8H_mjCMunWhxKYxHfopaC6Y5EzIeNY5OfsPffTT0MX1IgUKRLz2zpDvqXLwIQxYHYdhVO9i0y-x6V1s-hBbbPr09xrHlj85ReDjHnCIeJRVxgQDCr8BVxGchg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zhao, Yongyi</creator><creator>Raghuram, Ankit</creator><creator>Kim, Hyun K.</creator><creator>Hielscher, Andreas H.</creator><creator>Robinson, Jacob T.</creator><creator>Veeraraghavan, Ashok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4242-6910</orcidid><orcidid>https://orcid.org/0000-0002-3509-3054</orcidid><orcidid>https://orcid.org/0000-0001-5043-7460</orcidid><orcidid>https://orcid.org/0000-0001-6689-501X</orcidid></search><sort><creationdate>20210701</creationdate><title>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</title><author>Zhao, Yongyi ; Raghuram, Ankit ; Kim, Hyun K. ; Hielscher, Andreas H. ; Robinson, Jacob T. ; Veeraraghavan, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>confocal</topic><topic>Detectors</topic><topic>diffuse optical tomography</topic><topic>fluorescence imaging</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Light scattering</topic><topic>Microscopes</topic><topic>Multiplexing</topic><topic>Optical imaging</topic><topic>Photonics</topic><topic>Photons</topic><topic>Real time</topic><topic>Scattering</topic><topic>Spatial resolution</topic><topic>time binning</topic><topic>Time measurement</topic><topic>Time-of-flight imaging</topic><topic>Tomography</topic><topic>Travel time</topic><topic>US Department of Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yongyi</creatorcontrib><creatorcontrib>Raghuram, Ankit</creatorcontrib><creatorcontrib>Kim, Hyun K.</creatorcontrib><creatorcontrib>Hielscher, Andreas H.</creatorcontrib><creatorcontrib>Robinson, Jacob T.</creatorcontrib><creatorcontrib>Veeraraghavan, Ashok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yongyi</au><au>Raghuram, Ankit</au><au>Kim, Hyun K.</au><au>Hielscher, Andreas H.</au><au>Robinson, Jacob T.</au><au>Veeraraghavan, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>43</volume><issue>7</issue><spage>2206</spage><epage>2219</epage><pages>2206-2219</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional <inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math> <mml:mo>∼</mml:mo> </mml:math> <inline-graphic xlink:href="zhao-ieq1-3075366.gif"/> </inline-formula>10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (<inline-formula><tex-math notation="LaTeX">> \!\!50</tex-math> <mml:math> <mml:mrow> <mml:mo>></mml:mo> <mml:mspace width="-0.166667em"/> <mml:mspace width="-0.166667em"/> <mml:mn>50</mml:mn> </mml:mrow> </mml:math> <inline-graphic xlink:href="zhao-ieq2-3075366.gif"/> </inline-formula> mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>33891548</pmid><doi>10.1109/TPAMI.2021.3075366</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4242-6910</orcidid><orcidid>https://orcid.org/0000-0002-3509-3054</orcidid><orcidid>https://orcid.org/0000-0001-5043-7460</orcidid><orcidid>https://orcid.org/0000-0001-6689-501X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2021-07, Vol.43 (7), p.2206-2219
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_9415130
source IEEE Electronic Library (IEL)
subjects Algorithms
confocal
Detectors
diffuse optical tomography
fluorescence imaging
Image reconstruction
Image resolution
Imaging
Imaging techniques
Light scattering
Microscopes
Multiplexing
Optical imaging
Photonics
Photons
Real time
Scattering
Spatial resolution
time binning
Time measurement
Time-of-flight imaging
Tomography
Travel time
US Department of Transportation
title High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Resolution,%20Deep%20Imaging%20Using%20Confocal%20Time-of-Flight%20Diffuse%20Optical%20Tomography&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhao,%20Yongyi&rft.date=2021-07-01&rft.volume=43&rft.issue=7&rft.spage=2206&rft.epage=2219&rft.pages=2206-2219&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3075366&rft_dat=%3Cproquest_RIE%3E2539351628%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539351628&rft_id=info:pmid/33891548&rft_ieee_id=9415130&rfr_iscdi=true