High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography
Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional \sim ∼ 10-15 me...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2021-07, Vol.43 (7), p.2206-2219 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2219 |
---|---|
container_issue | 7 |
container_start_page | 2206 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 43 |
creator | Zhao, Yongyi Raghuram, Ankit Kim, Hyun K. Hielscher, Andreas H. Robinson, Jacob T. Veeraraghavan, Ashok |
description | Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional \sim ∼ 10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (> \!\!50 > 50 mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT. |
doi_str_mv | 10.1109/TPAMI.2021.3075366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9415130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415130</ieee_id><sourcerecordid>2539351628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</originalsourceid><addsrcrecordid>eNpdkdFr2zAQxsXYWLN0_8AGw9CXPdSZpLNs6WVQ0rUNdLSMdK9Csc6Oim15ll3ofz-lycK2F53g-93H3X2EfGB0wRhVX9b3F99XC045WwAtBOT5KzJjClQKAtRrMqMs56mUXJ6QdyE8UsoyQeEtOQGQiolMzsjPG1dvkx8YfDONznfnySVin6xaU7uuTh7C7l36rvKlaZK1azH1VXrVxK4xuXRVNQVM7vrRvci-9fVg-u3zKXlTmSbg-0Odk4erb-vlTXp7d71aXtymZZxkTIUtMthYu8mwEkJxw0VVcrDWKJlbUYCwVgk08ZNZiwUFlaFSEZI2K3MKc_J179tPmxZtid04mEb3g2vN8Ky9cfpfpXNbXfsnLXlB80JGg88Hg8H_mjCMunWhxKYxHfopaC6Y5EzIeNY5OfsPffTT0MX1IgUKRLz2zpDvqXLwIQxYHYdhVO9i0y-x6V1s-hBbbPr09xrHlj85ReDjHnCIeJRVxgQDCr8BVxGchg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539351628</pqid></control><display><type>article</type><title>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yongyi ; Raghuram, Ankit ; Kim, Hyun K. ; Hielscher, Andreas H. ; Robinson, Jacob T. ; Veeraraghavan, Ashok</creator><creatorcontrib>Zhao, Yongyi ; Raghuram, Ankit ; Kim, Hyun K. ; Hielscher, Andreas H. ; Robinson, Jacob T. ; Veeraraghavan, Ashok</creatorcontrib><description><![CDATA[Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional <inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math> <mml:mo>∼</mml:mo> </mml:math> <inline-graphic xlink:href="zhao-ieq1-3075366.gif"/> </inline-formula>10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (<inline-formula><tex-math notation="LaTeX">> \!\!50</tex-math> <mml:math> <mml:mrow> <mml:mo>></mml:mo> <mml:mspace width="-0.166667em"/> <mml:mspace width="-0.166667em"/> <mml:mn>50</mml:mn> </mml:mrow> </mml:math> <inline-graphic xlink:href="zhao-ieq2-3075366.gif"/> </inline-formula> mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.]]></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3075366</identifier><identifier>PMID: 33891548</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; confocal ; Detectors ; diffuse optical tomography ; fluorescence imaging ; Image reconstruction ; Image resolution ; Imaging ; Imaging techniques ; Light scattering ; Microscopes ; Multiplexing ; Optical imaging ; Photonics ; Photons ; Real time ; Scattering ; Spatial resolution ; time binning ; Time measurement ; Time-of-flight imaging ; Tomography ; Travel time ; US Department of Transportation</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-07, Vol.43 (7), p.2206-2219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</citedby><cites>FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</cites><orcidid>0000-0002-4242-6910 ; 0000-0002-3509-3054 ; 0000-0001-5043-7460 ; 0000-0001-6689-501X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9415130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yongyi</creatorcontrib><creatorcontrib>Raghuram, Ankit</creatorcontrib><creatorcontrib>Kim, Hyun K.</creatorcontrib><creatorcontrib>Hielscher, Andreas H.</creatorcontrib><creatorcontrib>Robinson, Jacob T.</creatorcontrib><creatorcontrib>Veeraraghavan, Ashok</creatorcontrib><title>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description><![CDATA[Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional <inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math> <mml:mo>∼</mml:mo> </mml:math> <inline-graphic xlink:href="zhao-ieq1-3075366.gif"/> </inline-formula>10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (<inline-formula><tex-math notation="LaTeX">> \!\!50</tex-math> <mml:math> <mml:mrow> <mml:mo>></mml:mo> <mml:mspace width="-0.166667em"/> <mml:mspace width="-0.166667em"/> <mml:mn>50</mml:mn> </mml:mrow> </mml:math> <inline-graphic xlink:href="zhao-ieq2-3075366.gif"/> </inline-formula> mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.]]></description><subject>Algorithms</subject><subject>confocal</subject><subject>Detectors</subject><subject>diffuse optical tomography</subject><subject>fluorescence imaging</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Light scattering</subject><subject>Microscopes</subject><subject>Multiplexing</subject><subject>Optical imaging</subject><subject>Photonics</subject><subject>Photons</subject><subject>Real time</subject><subject>Scattering</subject><subject>Spatial resolution</subject><subject>time binning</subject><subject>Time measurement</subject><subject>Time-of-flight imaging</subject><subject>Tomography</subject><subject>Travel time</subject><subject>US Department of Transportation</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkdFr2zAQxsXYWLN0_8AGw9CXPdSZpLNs6WVQ0rUNdLSMdK9Csc6Oim15ll3ofz-lycK2F53g-93H3X2EfGB0wRhVX9b3F99XC045WwAtBOT5KzJjClQKAtRrMqMs56mUXJ6QdyE8UsoyQeEtOQGQiolMzsjPG1dvkx8YfDONznfnySVin6xaU7uuTh7C7l36rvKlaZK1azH1VXrVxK4xuXRVNQVM7vrRvci-9fVg-u3zKXlTmSbg-0Odk4erb-vlTXp7d71aXtymZZxkTIUtMthYu8mwEkJxw0VVcrDWKJlbUYCwVgk08ZNZiwUFlaFSEZI2K3MKc_J179tPmxZtid04mEb3g2vN8Ky9cfpfpXNbXfsnLXlB80JGg88Hg8H_mjCMunWhxKYxHfopaC6Y5EzIeNY5OfsPffTT0MX1IgUKRLz2zpDvqXLwIQxYHYdhVO9i0y-x6V1s-hBbbPr09xrHlj85ReDjHnCIeJRVxgQDCr8BVxGchg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zhao, Yongyi</creator><creator>Raghuram, Ankit</creator><creator>Kim, Hyun K.</creator><creator>Hielscher, Andreas H.</creator><creator>Robinson, Jacob T.</creator><creator>Veeraraghavan, Ashok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4242-6910</orcidid><orcidid>https://orcid.org/0000-0002-3509-3054</orcidid><orcidid>https://orcid.org/0000-0001-5043-7460</orcidid><orcidid>https://orcid.org/0000-0001-6689-501X</orcidid></search><sort><creationdate>20210701</creationdate><title>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</title><author>Zhao, Yongyi ; Raghuram, Ankit ; Kim, Hyun K. ; Hielscher, Andreas H. ; Robinson, Jacob T. ; Veeraraghavan, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-5d743bddb4ef5592a25fc23dda986d5735dd95ea7354dde70394e995fc8d4c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>confocal</topic><topic>Detectors</topic><topic>diffuse optical tomography</topic><topic>fluorescence imaging</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Light scattering</topic><topic>Microscopes</topic><topic>Multiplexing</topic><topic>Optical imaging</topic><topic>Photonics</topic><topic>Photons</topic><topic>Real time</topic><topic>Scattering</topic><topic>Spatial resolution</topic><topic>time binning</topic><topic>Time measurement</topic><topic>Time-of-flight imaging</topic><topic>Tomography</topic><topic>Travel time</topic><topic>US Department of Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yongyi</creatorcontrib><creatorcontrib>Raghuram, Ankit</creatorcontrib><creatorcontrib>Kim, Hyun K.</creatorcontrib><creatorcontrib>Hielscher, Andreas H.</creatorcontrib><creatorcontrib>Robinson, Jacob T.</creatorcontrib><creatorcontrib>Veeraraghavan, Ashok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yongyi</au><au>Raghuram, Ankit</au><au>Kim, Hyun K.</au><au>Hielscher, Andreas H.</au><au>Robinson, Jacob T.</au><au>Veeraraghavan, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>43</volume><issue>7</issue><spage>2206</spage><epage>2219</epage><pages>2206-2219</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract><![CDATA[Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue - well beyond the conventional <inline-formula><tex-math notation="LaTeX">\sim</tex-math> <mml:math> <mml:mo>∼</mml:mo> </mml:math> <inline-graphic xlink:href="zhao-ieq1-3075366.gif"/> </inline-formula>10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to achieve millimeter spatial resolution in the highly scattered diffusion regime (<inline-formula><tex-math notation="LaTeX">> \!\!50</tex-math> <mml:math> <mml:mrow> <mml:mo>></mml:mo> <mml:mspace width="-0.166667em"/> <mml:mspace width="-0.166667em"/> <mml:mn>50</mml:mn> </mml:mrow> </mml:math> <inline-graphic xlink:href="zhao-ieq2-3075366.gif"/> </inline-formula> mean free paths). In addition, we demonstrate two additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast reconstruction algorithm, achieving a 100× speedup in reconstruction time compared to traditional DOT reconstruction techniques. Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging using DOT.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>33891548</pmid><doi>10.1109/TPAMI.2021.3075366</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4242-6910</orcidid><orcidid>https://orcid.org/0000-0002-3509-3054</orcidid><orcidid>https://orcid.org/0000-0001-5043-7460</orcidid><orcidid>https://orcid.org/0000-0001-6689-501X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2021-07, Vol.43 (7), p.2206-2219 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_9415130 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms confocal Detectors diffuse optical tomography fluorescence imaging Image reconstruction Image resolution Imaging Imaging techniques Light scattering Microscopes Multiplexing Optical imaging Photonics Photons Real time Scattering Spatial resolution time binning Time measurement Time-of-flight imaging Tomography Travel time US Department of Transportation |
title | High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Resolution,%20Deep%20Imaging%20Using%20Confocal%20Time-of-Flight%20Diffuse%20Optical%20Tomography&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhao,%20Yongyi&rft.date=2021-07-01&rft.volume=43&rft.issue=7&rft.spage=2206&rft.epage=2219&rft.pages=2206-2219&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3075366&rft_dat=%3Cproquest_RIE%3E2539351628%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539351628&rft_id=info:pmid/33891548&rft_ieee_id=9415130&rfr_iscdi=true |