Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey

Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2021, Vol.2, p.1015-1040
Hauptverfasser: Lahmeri, Mohamed-Amine, Kishk, Mustafa A., Alouini, Mohamed-Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1040
container_issue
container_start_page 1015
container_title IEEE open journal of the Communications Society
container_volume 2
creator Lahmeri, Mohamed-Amine
Kishk, Mustafa A.
Alouini, Mohamed-Slim
description Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.
doi_str_mv 10.1109/OJCOMS.2021.3075201
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9411810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9411810</ieee_id><doaj_id>oai_doaj_org_article_823b1019bec94248b408db19da694ebe</doaj_id><sourcerecordid>2531566911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqj0C9hEYp0y40dis6sqHkVAF-W1s-xkglJCA3YK4u9JCUKsZnQ1987MYewIYYII5mRxNVvcLCccOE4E5IoD7rADnkmZIldPu__6fTaOcQUAXCGikAdsNg1dXdVF7Zpkvu6oaepnWheUVG1I7qcP6dna-YbK5LEO1FCMyS11n214iafJNFluwgd9HbK9yjWRxr91xO7Pz-5ml-n14mI-m16nhcxllypUkmtBeZ5DX3NOObmtWOoy845XqHOCUppeNVr4TKMvSYExQgGoSozYfMgtW7eyb6F-deHLtq62P0Ibnq3rvykaspoLj4DGU2Ekl9pL0KVHU7rMSPLUZx0PWW-hfd9Q7Oyq3YR1f77lSqDKMtMDGjExTBWhjTFQ9bcVwW7h2wG-3cK3v_B719Hgqonoz2EkokYQ3w0lfYE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531566911</pqid></control><display><type>article</type><title>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lahmeri, Mohamed-Amine ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Lahmeri, Mohamed-Amine ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2021.3075201</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Classification algorithms ; Collaborative work ; Communication networks ; deep learning ; Drones ; federated learning ; Line of sight communication ; machine learning ; Reinforcement learning ; Task analysis ; Training ; Tutorials ; UAVs ; Unmanned aerial vehicles ; Wireless communications ; Wireless networks</subject><ispartof>IEEE open journal of the Communications Society, 2021, Vol.2, p.1015-1040</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</citedby><cites>FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</cites><orcidid>0000-0001-7518-2783 ; 0000-0002-3086-8930 ; 0000-0003-4827-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9411810$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lahmeri, Mohamed-Amine</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification algorithms</subject><subject>Collaborative work</subject><subject>Communication networks</subject><subject>deep learning</subject><subject>Drones</subject><subject>federated learning</subject><subject>Line of sight communication</subject><subject>machine learning</subject><subject>Reinforcement learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Tutorials</subject><subject>UAVs</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRS0EEqj0C9hEYp0y40dis6sqHkVAF-W1s-xkglJCA3YK4u9JCUKsZnQ1987MYewIYYII5mRxNVvcLCccOE4E5IoD7rADnkmZIldPu__6fTaOcQUAXCGikAdsNg1dXdVF7Zpkvu6oaepnWheUVG1I7qcP6dna-YbK5LEO1FCMyS11n214iafJNFluwgd9HbK9yjWRxr91xO7Pz-5ml-n14mI-m16nhcxllypUkmtBeZ5DX3NOObmtWOoy845XqHOCUppeNVr4TKMvSYExQgGoSozYfMgtW7eyb6F-deHLtq62P0Ibnq3rvykaspoLj4DGU2Ekl9pL0KVHU7rMSPLUZx0PWW-hfd9Q7Oyq3YR1f77lSqDKMtMDGjExTBWhjTFQ9bcVwW7h2wG-3cK3v_B719Hgqonoz2EkokYQ3w0lfYE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lahmeri, Mohamed-Amine</creator><creator>Kishk, Mustafa A.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0002-3086-8930</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid></search><sort><creationdate>2021</creationdate><title>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</title><author>Lahmeri, Mohamed-Amine ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification algorithms</topic><topic>Collaborative work</topic><topic>Communication networks</topic><topic>deep learning</topic><topic>Drones</topic><topic>federated learning</topic><topic>Line of sight communication</topic><topic>machine learning</topic><topic>Reinforcement learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Tutorials</topic><topic>UAVs</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahmeri, Mohamed-Amine</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahmeri, Mohamed-Amine</au><au>Kishk, Mustafa A.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2021</date><risdate>2021</risdate><volume>2</volume><spage>1015</spage><epage>1040</epage><pages>1015-1040</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2021.3075201</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0002-3086-8930</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2021, Vol.2, p.1015-1040
issn 2644-125X
2644-125X
language eng
recordid cdi_ieee_primary_9411810
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial intelligence
Classification algorithms
Collaborative work
Communication networks
deep learning
Drones
federated learning
Line of sight communication
machine learning
Reinforcement learning
Task analysis
Training
Tutorials
UAVs
Unmanned aerial vehicles
Wireless communications
Wireless networks
title Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20for%20UAV-Enabled%20Wireless%20Networks:%20A%20Survey&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Lahmeri,%20Mohamed-Amine&rft.date=2021&rft.volume=2&rft.spage=1015&rft.epage=1040&rft.pages=1015-1040&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2021.3075201&rft_dat=%3Cproquest_ieee_%3E2531566911%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531566911&rft_id=info:pmid/&rft_ieee_id=9411810&rft_doaj_id=oai_doaj_org_article_823b1019bec94248b408db19da694ebe&rfr_iscdi=true