Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vei...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of the Communications Society 2021, Vol.2, p.1015-1040 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1040 |
---|---|
container_issue | |
container_start_page | 1015 |
container_title | IEEE open journal of the Communications Society |
container_volume | 2 |
creator | Lahmeri, Mohamed-Amine Kishk, Mustafa A. Alouini, Mohamed-Slim |
description | Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks. |
doi_str_mv | 10.1109/OJCOMS.2021.3075201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9411810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9411810</ieee_id><doaj_id>oai_doaj_org_article_823b1019bec94248b408db19da694ebe</doaj_id><sourcerecordid>2531566911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqj0C9hEYp0y40dis6sqHkVAF-W1s-xkglJCA3YK4u9JCUKsZnQ1987MYewIYYII5mRxNVvcLCccOE4E5IoD7rADnkmZIldPu__6fTaOcQUAXCGikAdsNg1dXdVF7Zpkvu6oaepnWheUVG1I7qcP6dna-YbK5LEO1FCMyS11n214iafJNFluwgd9HbK9yjWRxr91xO7Pz-5ml-n14mI-m16nhcxllypUkmtBeZ5DX3NOObmtWOoy845XqHOCUppeNVr4TKMvSYExQgGoSozYfMgtW7eyb6F-deHLtq62P0Ibnq3rvykaspoLj4DGU2Ekl9pL0KVHU7rMSPLUZx0PWW-hfd9Q7Oyq3YR1f77lSqDKMtMDGjExTBWhjTFQ9bcVwW7h2wG-3cK3v_B719Hgqonoz2EkokYQ3w0lfYE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531566911</pqid></control><display><type>article</type><title>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lahmeri, Mohamed-Amine ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Lahmeri, Mohamed-Amine ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2021.3075201</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Classification algorithms ; Collaborative work ; Communication networks ; deep learning ; Drones ; federated learning ; Line of sight communication ; machine learning ; Reinforcement learning ; Task analysis ; Training ; Tutorials ; UAVs ; Unmanned aerial vehicles ; Wireless communications ; Wireless networks</subject><ispartof>IEEE open journal of the Communications Society, 2021, Vol.2, p.1015-1040</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</citedby><cites>FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</cites><orcidid>0000-0001-7518-2783 ; 0000-0002-3086-8930 ; 0000-0003-4827-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9411810$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lahmeri, Mohamed-Amine</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification algorithms</subject><subject>Collaborative work</subject><subject>Communication networks</subject><subject>deep learning</subject><subject>Drones</subject><subject>federated learning</subject><subject>Line of sight communication</subject><subject>machine learning</subject><subject>Reinforcement learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Tutorials</subject><subject>UAVs</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRS0EEqj0C9hEYp0y40dis6sqHkVAF-W1s-xkglJCA3YK4u9JCUKsZnQ1987MYewIYYII5mRxNVvcLCccOE4E5IoD7rADnkmZIldPu__6fTaOcQUAXCGikAdsNg1dXdVF7Zpkvu6oaepnWheUVG1I7qcP6dna-YbK5LEO1FCMyS11n214iafJNFluwgd9HbK9yjWRxr91xO7Pz-5ml-n14mI-m16nhcxllypUkmtBeZ5DX3NOObmtWOoy845XqHOCUppeNVr4TKMvSYExQgGoSozYfMgtW7eyb6F-deHLtq62P0Ibnq3rvykaspoLj4DGU2Ekl9pL0KVHU7rMSPLUZx0PWW-hfd9Q7Oyq3YR1f77lSqDKMtMDGjExTBWhjTFQ9bcVwW7h2wG-3cK3v_B719Hgqonoz2EkokYQ3w0lfYE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lahmeri, Mohamed-Amine</creator><creator>Kishk, Mustafa A.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0002-3086-8930</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid></search><sort><creationdate>2021</creationdate><title>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</title><author>Lahmeri, Mohamed-Amine ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5154283e777028372e7ea5154d8d6ba2f187e0d49ea5983b681bde509935005f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification algorithms</topic><topic>Collaborative work</topic><topic>Communication networks</topic><topic>deep learning</topic><topic>Drones</topic><topic>federated learning</topic><topic>Line of sight communication</topic><topic>machine learning</topic><topic>Reinforcement learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Tutorials</topic><topic>UAVs</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahmeri, Mohamed-Amine</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahmeri, Mohamed-Amine</au><au>Kishk, Mustafa A.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2021</date><risdate>2021</risdate><volume>2</volume><spage>1015</spage><epage>1040</epage><pages>1015-1040</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks. Their mobility and their ability to establish line of sight (LOS) links with the users made them key solutions for many potential applications. In the same vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly due to the massive amount of the available data. As a result, a significant part of the research community has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving several problems in relation to drones. In this article, we provide a comprehensive overview of some potential applications of AI in UAV-based networks. We also highlight the limits of the existing works and outline some potential future applications of AI for UAVs networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2021.3075201</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0002-3086-8930</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-125X |
ispartof | IEEE open journal of the Communications Society, 2021, Vol.2, p.1015-1040 |
issn | 2644-125X 2644-125X |
language | eng |
recordid | cdi_ieee_primary_9411810 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial intelligence Classification algorithms Collaborative work Communication networks deep learning Drones federated learning Line of sight communication machine learning Reinforcement learning Task analysis Training Tutorials UAVs Unmanned aerial vehicles Wireless communications Wireless networks |
title | Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20for%20UAV-Enabled%20Wireless%20Networks:%20A%20Survey&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Lahmeri,%20Mohamed-Amine&rft.date=2021&rft.volume=2&rft.spage=1015&rft.epage=1040&rft.pages=1015-1040&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2021.3075201&rft_dat=%3Cproquest_ieee_%3E2531566911%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531566911&rft_id=info:pmid/&rft_ieee_id=9411810&rft_doaj_id=oai_doaj_org_article_823b1019bec94248b408db19da694ebe&rfr_iscdi=true |