Dual /spl nu/-support vector machine with error rate and training size biasing
Support vector machines (SVMs) have been successfully applied to classification problems. The difficulty in selecting the most effective error penalty has been partly resolved with /spl nu/-SVM. However, the use of uneven training class sizes, which occurs frequently with target detection problems,...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1272 vol.2 |
---|---|
container_issue | |
container_start_page | 1269 |
container_title | |
container_volume | 2 |
creator | Hong-Gunn Chew Bogner, R.E. Cheng-Chew Lim |
description | Support vector machines (SVMs) have been successfully applied to classification problems. The difficulty in selecting the most effective error penalty has been partly resolved with /spl nu/-SVM. However, the use of uneven training class sizes, which occurs frequently with target detection problems, results in machines with biases towards the class with the larger training set. We propose an extended /spl nu/-SVM to counter the effects of the unbalanced training class sizes. The resulting dual /spl nu/-SVM provides the facility to counter these effects, as well as to adjust the error penalties of each class separately. The parameter /spl nu/ of each class provides a lower bound to the fraction of support vector of that class, and the upper bound to the fraction of bounded support vector of that class. These bounds allow the control on the error rates allowed for each class, and enable the training of machines with specific error rate requirements. |
doi_str_mv | 10.1109/ICASSP.2001.941156 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_941156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>941156</ieee_id><sourcerecordid>941156</sourcerecordid><originalsourceid>FETCH-ieee_primary_9411563</originalsourceid><addsrcrecordid>eNp9jsFOwkAURV9EE4vwA6zeD7R9rx1oZ2lAAhtjggt3ZMQHjClDMzOV6NdDImtWN-eczQUYMWXMpPPl9Hm1essKIs60Yh5P7iApykqnrOmjB32qaiorUqzuIeFxQemElX6EfgjfRFRXqk7gddaZBvPQNui6PA1d2x59xB_ZxKPHg9nsrRM82bhH8f6ivImCxn1h9MY663YY7J_gpzXhAgN42JomyPC6TzCav7xPF6kVkXXr7cH43_X_3fJmPAPmF0Do</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dual /spl nu/-support vector machine with error rate and training size biasing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hong-Gunn Chew ; Bogner, R.E. ; Cheng-Chew Lim</creator><creatorcontrib>Hong-Gunn Chew ; Bogner, R.E. ; Cheng-Chew Lim</creatorcontrib><description>Support vector machines (SVMs) have been successfully applied to classification problems. The difficulty in selecting the most effective error penalty has been partly resolved with /spl nu/-SVM. However, the use of uneven training class sizes, which occurs frequently with target detection problems, results in machines with biases towards the class with the larger training set. We propose an extended /spl nu/-SVM to counter the effects of the unbalanced training class sizes. The resulting dual /spl nu/-SVM provides the facility to counter these effects, as well as to adjust the error penalties of each class separately. The parameter /spl nu/ of each class provides a lower bound to the fraction of support vector of that class, and the upper bound to the fraction of bounded support vector of that class. These bounds allow the control on the error rates allowed for each class, and enable the training of machines with specific error rate requirements.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780370414</identifier><identifier>ISBN: 9780780370418</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2001.941156</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer errors ; Counting circuits ; Error analysis ; Information processing ; Lakes ; Object detection ; Signal processing ; Support vector machine classification ; Support vector machines ; Upper bound</subject><ispartof>2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, Vol.2, p.1269-1272 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/941156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/941156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong-Gunn Chew</creatorcontrib><creatorcontrib>Bogner, R.E.</creatorcontrib><creatorcontrib>Cheng-Chew Lim</creatorcontrib><title>Dual /spl nu/-support vector machine with error rate and training size biasing</title><title>2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221)</title><addtitle>ICASSP</addtitle><description>Support vector machines (SVMs) have been successfully applied to classification problems. The difficulty in selecting the most effective error penalty has been partly resolved with /spl nu/-SVM. However, the use of uneven training class sizes, which occurs frequently with target detection problems, results in machines with biases towards the class with the larger training set. We propose an extended /spl nu/-SVM to counter the effects of the unbalanced training class sizes. The resulting dual /spl nu/-SVM provides the facility to counter these effects, as well as to adjust the error penalties of each class separately. The parameter /spl nu/ of each class provides a lower bound to the fraction of support vector of that class, and the upper bound to the fraction of bounded support vector of that class. These bounds allow the control on the error rates allowed for each class, and enable the training of machines with specific error rate requirements.</description><subject>Computer errors</subject><subject>Counting circuits</subject><subject>Error analysis</subject><subject>Information processing</subject><subject>Lakes</subject><subject>Object detection</subject><subject>Signal processing</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Upper bound</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780370414</isbn><isbn>9780780370418</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jsFOwkAURV9EE4vwA6zeD7R9rx1oZ2lAAhtjggt3ZMQHjClDMzOV6NdDImtWN-eczQUYMWXMpPPl9Hm1essKIs60Yh5P7iApykqnrOmjB32qaiorUqzuIeFxQemElX6EfgjfRFRXqk7gddaZBvPQNui6PA1d2x59xB_ZxKPHg9nsrRM82bhH8f6ivImCxn1h9MY663YY7J_gpzXhAgN42JomyPC6TzCav7xPF6kVkXXr7cH43_X_3fJmPAPmF0Do</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Hong-Gunn Chew</creator><creator>Bogner, R.E.</creator><creator>Cheng-Chew Lim</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Dual /spl nu/-support vector machine with error rate and training size biasing</title><author>Hong-Gunn Chew ; Bogner, R.E. ; Cheng-Chew Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9411563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computer errors</topic><topic>Counting circuits</topic><topic>Error analysis</topic><topic>Information processing</topic><topic>Lakes</topic><topic>Object detection</topic><topic>Signal processing</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong-Gunn Chew</creatorcontrib><creatorcontrib>Bogner, R.E.</creatorcontrib><creatorcontrib>Cheng-Chew Lim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong-Gunn Chew</au><au>Bogner, R.E.</au><au>Cheng-Chew Lim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dual /spl nu/-support vector machine with error rate and training size biasing</atitle><btitle>2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221)</btitle><stitle>ICASSP</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>1269</spage><epage>1272 vol.2</epage><pages>1269-1272 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780370414</isbn><isbn>9780780370418</isbn><abstract>Support vector machines (SVMs) have been successfully applied to classification problems. The difficulty in selecting the most effective error penalty has been partly resolved with /spl nu/-SVM. However, the use of uneven training class sizes, which occurs frequently with target detection problems, results in machines with biases towards the class with the larger training set. We propose an extended /spl nu/-SVM to counter the effects of the unbalanced training class sizes. The resulting dual /spl nu/-SVM provides the facility to counter these effects, as well as to adjust the error penalties of each class separately. The parameter /spl nu/ of each class provides a lower bound to the fraction of support vector of that class, and the upper bound to the fraction of bounded support vector of that class. These bounds allow the control on the error rates allowed for each class, and enable the training of machines with specific error rate requirements.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2001.941156</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, Vol.2, p.1269-1272 vol.2 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_941156 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer errors Counting circuits Error analysis Information processing Lakes Object detection Signal processing Support vector machine classification Support vector machines Upper bound |
title | Dual /spl nu/-support vector machine with error rate and training size biasing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dual%20/spl%20nu/-support%20vector%20machine%20with%20error%20rate%20and%20training%20size%20biasing&rft.btitle=2001%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.01CH37221)&rft.au=Hong-Gunn%20Chew&rft.date=2001&rft.volume=2&rft.spage=1269&rft.epage=1272%20vol.2&rft.pages=1269-1272%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780370414&rft.isbn_list=9780780370418&rft_id=info:doi/10.1109/ICASSP.2001.941156&rft_dat=%3Cieee_6IE%3E941156%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=941156&rfr_iscdi=true |