Multiclass Classification by Sparse Multinomial Logistic Regression

In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2021-07, Vol.67 (7), p.4637-4646
Hauptverfasser: Abramovich, Felix, Grinshtein, Vadim, Levy, Tomer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4646
container_issue 7
container_start_page 4637
container_title IEEE transactions on information theory
container_volume 67
creator Abramovich, Felix
Grinshtein, Vadim
Levy, Tomer
description In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification excess risk of the resulting classifier. We establish also their tightness by deriving the corresponding minimax lower bounds. In particular, we show that there is a phase transition between small and large number of classes. The bounds can be reduced under the additional low noise condition. To find a penalized maximum likelihood solution with a complexity penalty requires, however, a combinatorial search over all possible models. To design a feature selection procedure computationally feasible for high-dimensional data, we propose multinomial logistic group Lasso and Slope classifiers and show that they also achieve the minimax order.
doi_str_mv 10.1109/TIT.2021.3075137
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9410597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9410597</ieee_id><sourcerecordid>2541475514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bf26bdc3c1e65f4af40dbc97efa6049e6a78fe73ff1048f35acde742ad31941f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfGw2R1m0FiqC1nPIZpOSst3UZHvovze1xcsMA887LzwI3QOeAWD5tFqsZgQTmFEsOFBxgSbAuShlxdklmmAMdSkZq6_RTUqbfDIOZIKa930_etPrlIrmOL3zRo8-DEV7KL52OiZb_DFD2HrdF8uw9iknik-7jjbzYbhFV073yd6d9xR9v76smrdy-TFfNM_L0hAJY9k6UrWdoQZsxR3TjuGuNVJYpyvMpK20qJ0V1DnArHaUa9NZwYjuKEgGjk7R4-nvLoafvU2j2oR9HHKlIpwBE5wDyxQ-USaGlKJ1ahf9VseDAqyOqlRWpY6q1FlVjjycIt5a-4_nTsyloL-KSmXd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541475514</pqid></control><display><type>article</type><title>Multiclass Classification by Sparse Multinomial Logistic Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Abramovich, Felix ; Grinshtein, Vadim ; Levy, Tomer</creator><creatorcontrib>Abramovich, Felix ; Grinshtein, Vadim ; Levy, Tomer</creatorcontrib><description>In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification excess risk of the resulting classifier. We establish also their tightness by deriving the corresponding minimax lower bounds. In particular, we show that there is a phase transition between small and large number of classes. The bounds can be reduced under the additional low noise condition. To find a penalized maximum likelihood solution with a complexity penalty requires, however, a combinatorial search over all possible models. To design a feature selection procedure computationally feasible for high-dimensional data, we propose multinomial logistic group Lasso and Slope classifiers and show that they also achieve the minimax order.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2021.3075137</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Classifiers ; Combinatorial analysis ; Complexity ; Complexity penalty ; Complexity theory ; convex relaxation ; Data models ; Feature extraction ; feature selection ; high-dimensionality ; IEEE Sections ; Logistics ; Low noise ; Lower bounds ; Maximum likelihood estimation ; Minimax technique ; minimaxity ; Minimization ; misclassification excess risk ; Noise reduction ; Phase transitions ; sparsity ; Tightness</subject><ispartof>IEEE transactions on information theory, 2021-07, Vol.67 (7), p.4637-4646</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bf26bdc3c1e65f4af40dbc97efa6049e6a78fe73ff1048f35acde742ad31941f3</citedby><cites>FETCH-LOGICAL-c291t-bf26bdc3c1e65f4af40dbc97efa6049e6a78fe73ff1048f35acde742ad31941f3</cites><orcidid>0000-0002-1976-6781 ; 0000-0001-7313-1050 ; 0000-0002-4600-6892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9410597$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9410597$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abramovich, Felix</creatorcontrib><creatorcontrib>Grinshtein, Vadim</creatorcontrib><creatorcontrib>Levy, Tomer</creatorcontrib><title>Multiclass Classification by Sparse Multinomial Logistic Regression</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification excess risk of the resulting classifier. We establish also their tightness by deriving the corresponding minimax lower bounds. In particular, we show that there is a phase transition between small and large number of classes. The bounds can be reduced under the additional low noise condition. To find a penalized maximum likelihood solution with a complexity penalty requires, however, a combinatorial search over all possible models. To design a feature selection procedure computationally feasible for high-dimensional data, we propose multinomial logistic group Lasso and Slope classifiers and show that they also achieve the minimax order.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Combinatorial analysis</subject><subject>Complexity</subject><subject>Complexity penalty</subject><subject>Complexity theory</subject><subject>convex relaxation</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>high-dimensionality</subject><subject>IEEE Sections</subject><subject>Logistics</subject><subject>Low noise</subject><subject>Lower bounds</subject><subject>Maximum likelihood estimation</subject><subject>Minimax technique</subject><subject>minimaxity</subject><subject>Minimization</subject><subject>misclassification excess risk</subject><subject>Noise reduction</subject><subject>Phase transitions</subject><subject>sparsity</subject><subject>Tightness</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfGw2R1m0FiqC1nPIZpOSst3UZHvovze1xcsMA887LzwI3QOeAWD5tFqsZgQTmFEsOFBxgSbAuShlxdklmmAMdSkZq6_RTUqbfDIOZIKa930_etPrlIrmOL3zRo8-DEV7KL52OiZb_DFD2HrdF8uw9iknik-7jjbzYbhFV073yd6d9xR9v76smrdy-TFfNM_L0hAJY9k6UrWdoQZsxR3TjuGuNVJYpyvMpK20qJ0V1DnArHaUa9NZwYjuKEgGjk7R4-nvLoafvU2j2oR9HHKlIpwBE5wDyxQ-USaGlKJ1ahf9VseDAqyOqlRWpY6q1FlVjjycIt5a-4_nTsyloL-KSmXd</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Abramovich, Felix</creator><creator>Grinshtein, Vadim</creator><creator>Levy, Tomer</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1976-6781</orcidid><orcidid>https://orcid.org/0000-0001-7313-1050</orcidid><orcidid>https://orcid.org/0000-0002-4600-6892</orcidid></search><sort><creationdate>20210701</creationdate><title>Multiclass Classification by Sparse Multinomial Logistic Regression</title><author>Abramovich, Felix ; Grinshtein, Vadim ; Levy, Tomer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bf26bdc3c1e65f4af40dbc97efa6049e6a78fe73ff1048f35acde742ad31941f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Combinatorial analysis</topic><topic>Complexity</topic><topic>Complexity penalty</topic><topic>Complexity theory</topic><topic>convex relaxation</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>high-dimensionality</topic><topic>IEEE Sections</topic><topic>Logistics</topic><topic>Low noise</topic><topic>Lower bounds</topic><topic>Maximum likelihood estimation</topic><topic>Minimax technique</topic><topic>minimaxity</topic><topic>Minimization</topic><topic>misclassification excess risk</topic><topic>Noise reduction</topic><topic>Phase transitions</topic><topic>sparsity</topic><topic>Tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramovich, Felix</creatorcontrib><creatorcontrib>Grinshtein, Vadim</creatorcontrib><creatorcontrib>Levy, Tomer</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abramovich, Felix</au><au>Grinshtein, Vadim</au><au>Levy, Tomer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Classification by Sparse Multinomial Logistic Regression</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>67</volume><issue>7</issue><spage>4637</spage><epage>4646</epage><pages>4637-4646</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification excess risk of the resulting classifier. We establish also their tightness by deriving the corresponding minimax lower bounds. In particular, we show that there is a phase transition between small and large number of classes. The bounds can be reduced under the additional low noise condition. To find a penalized maximum likelihood solution with a complexity penalty requires, however, a combinatorial search over all possible models. To design a feature selection procedure computationally feasible for high-dimensional data, we propose multinomial logistic group Lasso and Slope classifiers and show that they also achieve the minimax order.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2021.3075137</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1976-6781</orcidid><orcidid>https://orcid.org/0000-0001-7313-1050</orcidid><orcidid>https://orcid.org/0000-0002-4600-6892</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2021-07, Vol.67 (7), p.4637-4646
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9410597
source IEEE Electronic Library (IEL)
subjects Classification
Classifiers
Combinatorial analysis
Complexity
Complexity penalty
Complexity theory
convex relaxation
Data models
Feature extraction
feature selection
high-dimensionality
IEEE Sections
Logistics
Low noise
Lower bounds
Maximum likelihood estimation
Minimax technique
minimaxity
Minimization
misclassification excess risk
Noise reduction
Phase transitions
sparsity
Tightness
title Multiclass Classification by Sparse Multinomial Logistic Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Classification%20by%20Sparse%20Multinomial%20Logistic%20Regression&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Abramovich,%20Felix&rft.date=2021-07-01&rft.volume=67&rft.issue=7&rft.spage=4637&rft.epage=4646&rft.pages=4637-4646&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2021.3075137&rft_dat=%3Cproquest_RIE%3E2541475514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541475514&rft_id=info:pmid/&rft_ieee_id=9410597&rfr_iscdi=true