Generation and expansion of word graphs using long span context information

An algorithm for the generation of word graphs in a cross-word decoder that uses long span m-gram language models (LMs) is presented. The generation of word hypotheses within the graph relies on the word m-tuple-based boundary optimization. The graphs contain the full word history knowledge informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neukirchen, C., Klakow, D., Aubert, X.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44 vol.1
container_issue
container_start_page 41
container_title
container_volume 1
creator Neukirchen, C.
Klakow, D.
Aubert, X.
description An algorithm for the generation of word graphs in a cross-word decoder that uses long span m-gram language models (LMs) is presented. The generation of word hypotheses within the graph relies on the word m-tuple-based boundary optimization. The graphs contain the full word history knowledge information since the graph structure reflects all LM constraints used during the search. This results in better word boundaries and in enhanced capabilities to prune the graphs. Furthermore, the memory costs for expanding the m-gram constrained word graphs to apply very long span LMs (e.g. ten-grams that are constructed by log linear LM combination) are considerably reduced. Experiments for lattice generation and rescoring have been carried out on the 5K-word WSJ task and the 64K-word NAB task.
doi_str_mv 10.1109/ICASSP.2001.940762
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_940762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>940762</ieee_id><sourcerecordid>940762</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-1438b53c005a27fc87caa886126d956321a7e0daa947facc72ba34014e3932e73</originalsourceid><addsrcrecordid>eNotkNtKAzEYhIMHcFt9gV7lBXb9c9hNcilFq1hQaC-8K3-z2RppkyVZsb69q_VmhoHhYxhCZgwqxsDcPs3vVqvXigOwykhQDT8jBRfKlMzA2zmZgNIgFEgmL0jBag5lw6S5IpOcPwBAK6kL8rxwwSUcfAwUQ0vdsceQf1Ps6FdMLd0l7N8z_cw-7Og-jpLHCrUxDO44UB-6mA5_gGty2eE-u5t_n5L1w_16_lguXxbj2mXptRpKJoXe1sIC1MhVZ7WyiFo3jDetqRvBGSoHLaKRqkNrFd-ikMCkE0Zwp8SUzE5Y75zb9MkfMH1vTheIH0JTTwA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generation and expansion of word graphs using long span context information</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neukirchen, C. ; Klakow, D. ; Aubert, X.</creator><creatorcontrib>Neukirchen, C. ; Klakow, D. ; Aubert, X.</creatorcontrib><description>An algorithm for the generation of word graphs in a cross-word decoder that uses long span m-gram language models (LMs) is presented. The generation of word hypotheses within the graph relies on the word m-tuple-based boundary optimization. The graphs contain the full word history knowledge information since the graph structure reflects all LM constraints used during the search. This results in better word boundaries and in enhanced capabilities to prune the graphs. Furthermore, the memory costs for expanding the m-gram constrained word graphs to apply very long span LMs (e.g. ten-grams that are constructed by log linear LM combination) are considerably reduced. Experiments for lattice generation and rescoring have been carried out on the 5K-word WSJ task and the 64K-word NAB task.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780370414</identifier><identifier>ISBN: 9780780370418</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2001.940762</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Context modeling ; Costs ; Decoding ; Gold ; Hidden Markov models ; History ; Laboratories ; Speech recognition ; Tree graphs</subject><ispartof>2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, Vol.1, p.41-44 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/940762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/940762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Klakow, D.</creatorcontrib><creatorcontrib>Aubert, X.</creatorcontrib><title>Generation and expansion of word graphs using long span context information</title><title>2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221)</title><addtitle>ICASSP</addtitle><description>An algorithm for the generation of word graphs in a cross-word decoder that uses long span m-gram language models (LMs) is presented. The generation of word hypotheses within the graph relies on the word m-tuple-based boundary optimization. The graphs contain the full word history knowledge information since the graph structure reflects all LM constraints used during the search. This results in better word boundaries and in enhanced capabilities to prune the graphs. Furthermore, the memory costs for expanding the m-gram constrained word graphs to apply very long span LMs (e.g. ten-grams that are constructed by log linear LM combination) are considerably reduced. Experiments for lattice generation and rescoring have been carried out on the 5K-word WSJ task and the 64K-word NAB task.</description><subject>Acoustics</subject><subject>Context modeling</subject><subject>Costs</subject><subject>Decoding</subject><subject>Gold</subject><subject>Hidden Markov models</subject><subject>History</subject><subject>Laboratories</subject><subject>Speech recognition</subject><subject>Tree graphs</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780370414</isbn><isbn>9780780370418</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNtKAzEYhIMHcFt9gV7lBXb9c9hNcilFq1hQaC-8K3-z2RppkyVZsb69q_VmhoHhYxhCZgwqxsDcPs3vVqvXigOwykhQDT8jBRfKlMzA2zmZgNIgFEgmL0jBag5lw6S5IpOcPwBAK6kL8rxwwSUcfAwUQ0vdsceQf1Ps6FdMLd0l7N8z_cw-7Og-jpLHCrUxDO44UB-6mA5_gGty2eE-u5t_n5L1w_16_lguXxbj2mXptRpKJoXe1sIC1MhVZ7WyiFo3jDetqRvBGSoHLaKRqkNrFd-ikMCkE0Zwp8SUzE5Y75zb9MkfMH1vTheIH0JTTwA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Neukirchen, C.</creator><creator>Klakow, D.</creator><creator>Aubert, X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Generation and expansion of word graphs using long span context information</title><author>Neukirchen, C. ; Klakow, D. ; Aubert, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-1438b53c005a27fc87caa886126d956321a7e0daa947facc72ba34014e3932e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acoustics</topic><topic>Context modeling</topic><topic>Costs</topic><topic>Decoding</topic><topic>Gold</topic><topic>Hidden Markov models</topic><topic>History</topic><topic>Laboratories</topic><topic>Speech recognition</topic><topic>Tree graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Neukirchen, C.</creatorcontrib><creatorcontrib>Klakow, D.</creatorcontrib><creatorcontrib>Aubert, X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neukirchen, C.</au><au>Klakow, D.</au><au>Aubert, X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generation and expansion of word graphs using long span context information</atitle><btitle>2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221)</btitle><stitle>ICASSP</stitle><date>2001</date><risdate>2001</risdate><volume>1</volume><spage>41</spage><epage>44 vol.1</epage><pages>41-44 vol.1</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780370414</isbn><isbn>9780780370418</isbn><abstract>An algorithm for the generation of word graphs in a cross-word decoder that uses long span m-gram language models (LMs) is presented. The generation of word hypotheses within the graph relies on the word m-tuple-based boundary optimization. The graphs contain the full word history knowledge information since the graph structure reflects all LM constraints used during the search. This results in better word boundaries and in enhanced capabilities to prune the graphs. Furthermore, the memory costs for expanding the m-gram constrained word graphs to apply very long span LMs (e.g. ten-grams that are constructed by log linear LM combination) are considerably reduced. Experiments for lattice generation and rescoring have been carried out on the 5K-word WSJ task and the 64K-word NAB task.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2001.940762</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, Vol.1, p.41-44 vol.1
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_940762
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Context modeling
Costs
Decoding
Gold
Hidden Markov models
History
Laboratories
Speech recognition
Tree graphs
title Generation and expansion of word graphs using long span context information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generation%20and%20expansion%20of%20word%20graphs%20using%20long%20span%20context%20information&rft.btitle=2001%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.01CH37221)&rft.au=Neukirchen,%20C.&rft.date=2001&rft.volume=1&rft.spage=41&rft.epage=44%20vol.1&rft.pages=41-44%20vol.1&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780370414&rft.isbn_list=9780780370418&rft_id=info:doi/10.1109/ICASSP.2001.940762&rft_dat=%3Cieee_6IE%3E940762%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=940762&rfr_iscdi=true