Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers

B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-10, Vol.25 (10), p.3874-3885
Hauptverfasser: Zhang, Huili, Guo, Lehang, Wang, Dan, Wang, Jun, Bao, Lili, Ying, Shihui, Xu, Huixiong, Shi, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3885
container_issue 10
container_start_page 3874
container_title IEEE journal of biomedical and health informatics
container_volume 25
creator Zhang, Huili
Guo, Lehang
Wang, Dan
Wang, Jun
Bao, Lili
Ying, Shihui
Xu, Huixiong
Shi, Jun
description B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.
doi_str_mv 10.1109/JBHI.2021.3073812
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9406331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9406331</ieee_id><sourcerecordid>2579440098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</originalsourceid><addsrcrecordid>eNpdkctuGyEUQFHVKImSfEBUqULqpptxYJgZYBm7bR611Up5bEcYLinRGKYwVOpn9I-DZSeLsoF7OffyOAidUzKjlMiL2_n1zawmNZ0xwpmg9Tt0XNNOVHVNxPvXNZXNETpL6ZmUIUpKdofoiDHRUU75Mfq3ysPkqruQowZ8H5VPFiJegore-Sf86BTeId8hehjwXR7HECf8CHoKEa-U_uU84J9DTtiWxLxaBQP4YZiiSiF7U81VAoMXYTPmCWJ16UwJvzj15ENyCQeLl-5POXOhvIaYTtGBVUOCs_18gh6-fb1fXFfLH1c3i8tlpRvaThWXTApFrARGrV6zFqDj1NaGdGD0utFaWQOWFcyI8nbLLFdScSJ0U1jKTtDnXd8xht8Z0tRvXNIwDMpDyKmvW9q0kvN2i376D30u_-XL7QrFZdMQIkWh6I7SMaQUwfZjdBsV__aU9Ftl_VZZv1XW75WVmo_7znm9AfNW8SqoAB92gAOAt23ZkI4xyl4Ai_GbIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440098</pqid></control><display><type>article</type><title>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Huili ; Guo, Lehang ; Wang, Dan ; Wang, Jun ; Bao, Lili ; Ying, Shihui ; Xu, Huixiong ; Shi, Jun</creator><creatorcontrib>Zhang, Huili ; Guo, Lehang ; Wang, Dan ; Wang, Jun ; Bao, Lili ; Ying, Shihui ; Xu, Huixiong ; Shi, Jun</creatorcontrib><description>B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3073812</identifier><identifier>PMID: 33861717</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Cancer ; Diagnosis ; Domains ; Hyperplanes ; Imaging ; Kernel ; Kernels ; Knowledge management ; Labels ; Liver ; Liver cancer ; Machine learning ; Medical diagnosis ; Medical imaging ; multi-source transfer learning ; multiple kernel learning ; Nonparallel hyperplane support vector machine plus ; Perfusion ; Support vector machines ; Task analysis ; Transfer learning ; Ultrasonic imaging ; Ultrasound ; ultrasound imaging ; Vascularization</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-10, Vol.25 (10), p.3874-3885</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</citedby><cites>FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</cites><orcidid>0000-0001-9423-0146 ; 0000-0002-3226-3978 ; 0000-0001-9548-0411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9406331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9406331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33861717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Huili</creatorcontrib><creatorcontrib>Guo, Lehang</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Bao, Lili</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><creatorcontrib>Xu, Huixiong</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><title>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Diagnosis</subject><subject>Domains</subject><subject>Hyperplanes</subject><subject>Imaging</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Knowledge management</subject><subject>Labels</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>multi-source transfer learning</subject><subject>multiple kernel learning</subject><subject>Nonparallel hyperplane support vector machine plus</subject><subject>Perfusion</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Transfer learning</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>ultrasound imaging</subject><subject>Vascularization</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctuGyEUQFHVKImSfEBUqULqpptxYJgZYBm7bR611Up5bEcYLinRGKYwVOpn9I-DZSeLsoF7OffyOAidUzKjlMiL2_n1zawmNZ0xwpmg9Tt0XNNOVHVNxPvXNZXNETpL6ZmUIUpKdofoiDHRUU75Mfq3ysPkqruQowZ8H5VPFiJegore-Sf86BTeId8hehjwXR7HECf8CHoKEa-U_uU84J9DTtiWxLxaBQP4YZiiSiF7U81VAoMXYTPmCWJ16UwJvzj15ENyCQeLl-5POXOhvIaYTtGBVUOCs_18gh6-fb1fXFfLH1c3i8tlpRvaThWXTApFrARGrV6zFqDj1NaGdGD0utFaWQOWFcyI8nbLLFdScSJ0U1jKTtDnXd8xht8Z0tRvXNIwDMpDyKmvW9q0kvN2i376D30u_-XL7QrFZdMQIkWh6I7SMaQUwfZjdBsV__aU9Ftl_VZZv1XW75WVmo_7znm9AfNW8SqoAB92gAOAt23ZkI4xyl4Ai_GbIQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Huili</creator><creator>Guo, Lehang</creator><creator>Wang, Dan</creator><creator>Wang, Jun</creator><creator>Bao, Lili</creator><creator>Ying, Shihui</creator><creator>Xu, Huixiong</creator><creator>Shi, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0000-0002-3226-3978</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid></search><sort><creationdate>20211001</creationdate><title>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</title><author>Zhang, Huili ; Guo, Lehang ; Wang, Dan ; Wang, Jun ; Bao, Lili ; Ying, Shihui ; Xu, Huixiong ; Shi, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Diagnosis</topic><topic>Domains</topic><topic>Hyperplanes</topic><topic>Imaging</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Knowledge management</topic><topic>Labels</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>multi-source transfer learning</topic><topic>multiple kernel learning</topic><topic>Nonparallel hyperplane support vector machine plus</topic><topic>Perfusion</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Transfer learning</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>ultrasound imaging</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huili</creatorcontrib><creatorcontrib>Guo, Lehang</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Bao, Lili</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><creatorcontrib>Xu, Huixiong</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Huili</au><au>Guo, Lehang</au><au>Wang, Dan</au><au>Wang, Jun</au><au>Bao, Lili</au><au>Ying, Shihui</au><au>Xu, Huixiong</au><au>Shi, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>25</volume><issue>10</issue><spage>3874</spage><epage>3885</epage><pages>3874-3885</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33861717</pmid><doi>10.1109/JBHI.2021.3073812</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0000-0002-3226-3978</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-10, Vol.25 (10), p.3874-3885
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_9406331
source IEEE Electronic Library (IEL)
subjects Algorithms
Cancer
Diagnosis
Domains
Hyperplanes
Imaging
Kernel
Kernels
Knowledge management
Labels
Liver
Liver cancer
Machine learning
Medical diagnosis
Medical imaging
multi-source transfer learning
multiple kernel learning
Nonparallel hyperplane support vector machine plus
Perfusion
Support vector machines
Task analysis
Transfer learning
Ultrasonic imaging
Ultrasound
ultrasound imaging
Vascularization
title Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Source%20Transfer%20Learning%20Via%20Multi-Kernel%20Support%20Vector%20Machine%20Plus%20for%20B-Mode%20Ultrasound-Based%20Computer-Aided%20Diagnosis%20of%20Liver%20Cancers&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhang,%20Huili&rft.date=2021-10-01&rft.volume=25&rft.issue=10&rft.spage=3874&rft.epage=3885&rft.pages=3874-3885&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3073812&rft_dat=%3Cproquest_RIE%3E2579440098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440098&rft_id=info:pmid/33861717&rft_ieee_id=9406331&rfr_iscdi=true