Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers
B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based compu...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2021-10, Vol.25 (10), p.3874-3885 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3885 |
---|---|
container_issue | 10 |
container_start_page | 3874 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 25 |
creator | Zhang, Huili Guo, Lehang Wang, Dan Wang, Jun Bao, Lili Ying, Shihui Xu, Huixiong Shi, Jun |
description | B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively. |
doi_str_mv | 10.1109/JBHI.2021.3073812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9406331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9406331</ieee_id><sourcerecordid>2579440098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</originalsourceid><addsrcrecordid>eNpdkctuGyEUQFHVKImSfEBUqULqpptxYJgZYBm7bR611Up5bEcYLinRGKYwVOpn9I-DZSeLsoF7OffyOAidUzKjlMiL2_n1zawmNZ0xwpmg9Tt0XNNOVHVNxPvXNZXNETpL6ZmUIUpKdofoiDHRUU75Mfq3ysPkqruQowZ8H5VPFiJegore-Sf86BTeId8hehjwXR7HECf8CHoKEa-U_uU84J9DTtiWxLxaBQP4YZiiSiF7U81VAoMXYTPmCWJ16UwJvzj15ENyCQeLl-5POXOhvIaYTtGBVUOCs_18gh6-fb1fXFfLH1c3i8tlpRvaThWXTApFrARGrV6zFqDj1NaGdGD0utFaWQOWFcyI8nbLLFdScSJ0U1jKTtDnXd8xht8Z0tRvXNIwDMpDyKmvW9q0kvN2i376D30u_-XL7QrFZdMQIkWh6I7SMaQUwfZjdBsV__aU9Ftl_VZZv1XW75WVmo_7znm9AfNW8SqoAB92gAOAt23ZkI4xyl4Ai_GbIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579440098</pqid></control><display><type>article</type><title>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Huili ; Guo, Lehang ; Wang, Dan ; Wang, Jun ; Bao, Lili ; Ying, Shihui ; Xu, Huixiong ; Shi, Jun</creator><creatorcontrib>Zhang, Huili ; Guo, Lehang ; Wang, Dan ; Wang, Jun ; Bao, Lili ; Ying, Shihui ; Xu, Huixiong ; Shi, Jun</creatorcontrib><description>B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3073812</identifier><identifier>PMID: 33861717</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Cancer ; Diagnosis ; Domains ; Hyperplanes ; Imaging ; Kernel ; Kernels ; Knowledge management ; Labels ; Liver ; Liver cancer ; Machine learning ; Medical diagnosis ; Medical imaging ; multi-source transfer learning ; multiple kernel learning ; Nonparallel hyperplane support vector machine plus ; Perfusion ; Support vector machines ; Task analysis ; Transfer learning ; Ultrasonic imaging ; Ultrasound ; ultrasound imaging ; Vascularization</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-10, Vol.25 (10), p.3874-3885</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</citedby><cites>FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</cites><orcidid>0000-0001-9423-0146 ; 0000-0002-3226-3978 ; 0000-0001-9548-0411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9406331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9406331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33861717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Huili</creatorcontrib><creatorcontrib>Guo, Lehang</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Bao, Lili</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><creatorcontrib>Xu, Huixiong</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><title>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Diagnosis</subject><subject>Domains</subject><subject>Hyperplanes</subject><subject>Imaging</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Knowledge management</subject><subject>Labels</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>multi-source transfer learning</subject><subject>multiple kernel learning</subject><subject>Nonparallel hyperplane support vector machine plus</subject><subject>Perfusion</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Transfer learning</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>ultrasound imaging</subject><subject>Vascularization</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctuGyEUQFHVKImSfEBUqULqpptxYJgZYBm7bR611Up5bEcYLinRGKYwVOpn9I-DZSeLsoF7OffyOAidUzKjlMiL2_n1zawmNZ0xwpmg9Tt0XNNOVHVNxPvXNZXNETpL6ZmUIUpKdofoiDHRUU75Mfq3ysPkqruQowZ8H5VPFiJegore-Sf86BTeId8hehjwXR7HECf8CHoKEa-U_uU84J9DTtiWxLxaBQP4YZiiSiF7U81VAoMXYTPmCWJ16UwJvzj15ENyCQeLl-5POXOhvIaYTtGBVUOCs_18gh6-fb1fXFfLH1c3i8tlpRvaThWXTApFrARGrV6zFqDj1NaGdGD0utFaWQOWFcyI8nbLLFdScSJ0U1jKTtDnXd8xht8Z0tRvXNIwDMpDyKmvW9q0kvN2i376D30u_-XL7QrFZdMQIkWh6I7SMaQUwfZjdBsV__aU9Ftl_VZZv1XW75WVmo_7znm9AfNW8SqoAB92gAOAt23ZkI4xyl4Ai_GbIQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Huili</creator><creator>Guo, Lehang</creator><creator>Wang, Dan</creator><creator>Wang, Jun</creator><creator>Bao, Lili</creator><creator>Ying, Shihui</creator><creator>Xu, Huixiong</creator><creator>Shi, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0000-0002-3226-3978</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid></search><sort><creationdate>20211001</creationdate><title>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</title><author>Zhang, Huili ; Guo, Lehang ; Wang, Dan ; Wang, Jun ; Bao, Lili ; Ying, Shihui ; Xu, Huixiong ; Shi, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-79398a0f9e31fcb35ee671f2d06edcb4ccafdef3939d8000f3f7a9a708c45ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Diagnosis</topic><topic>Domains</topic><topic>Hyperplanes</topic><topic>Imaging</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Knowledge management</topic><topic>Labels</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>multi-source transfer learning</topic><topic>multiple kernel learning</topic><topic>Nonparallel hyperplane support vector machine plus</topic><topic>Perfusion</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Transfer learning</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>ultrasound imaging</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huili</creatorcontrib><creatorcontrib>Guo, Lehang</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Bao, Lili</creatorcontrib><creatorcontrib>Ying, Shihui</creatorcontrib><creatorcontrib>Xu, Huixiong</creatorcontrib><creatorcontrib>Shi, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Huili</au><au>Guo, Lehang</au><au>Wang, Dan</au><au>Wang, Jun</au><au>Bao, Lili</au><au>Ying, Shihui</au><au>Xu, Huixiong</au><au>Shi, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>25</volume><issue>10</issue><spage>3874</spage><epage>3885</epage><pages>3874-3885</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to promote diagnostic accuracy. In this work, we propose to improve the BUS-based computer aided diagnosis for liver cancers by transferring knowledge from the multi-view CEUS images, including the arterial phase, portal venous phase, and delayed phase, respectively. To make full use of the shared labels of paired of BUS and CEUS images to guide knowledge transfer, support vector machine plus (SVM+), a specifically designed transfer learning (TL) classifier for paired data with shared labels, is adopted for this supervised TL. A nonparallel hyperplane based SVM+ (NHSVM+) is first proposed to improve the TL performance by transferring the per-class knowledge from source domain to the corresponding target domain. Moreover, to handle the issue of multi-source TL, a multi-kernel learning based NHSVM+ (MKL-NHSVM+) algorithm is further developed to effectively transfer multi-source knowledge from multi-view CEUS images. The experimental results indicate that the proposed MKL-NHSVM+ outperforms all the compared algorithms for diagnosis of liver cancers, whose mean classification accuracy, sensitivity, and specificity are 88.18 ± 3.16 %, 86.98 ± 4.77 %, and 89.42±3.77%, respectively.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33861717</pmid><doi>10.1109/JBHI.2021.3073812</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9423-0146</orcidid><orcidid>https://orcid.org/0000-0002-3226-3978</orcidid><orcidid>https://orcid.org/0000-0001-9548-0411</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2021-10, Vol.25 (10), p.3874-3885 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_9406331 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cancer Diagnosis Domains Hyperplanes Imaging Kernel Kernels Knowledge management Labels Liver Liver cancer Machine learning Medical diagnosis Medical imaging multi-source transfer learning multiple kernel learning Nonparallel hyperplane support vector machine plus Perfusion Support vector machines Task analysis Transfer learning Ultrasonic imaging Ultrasound ultrasound imaging Vascularization |
title | Multi-Source Transfer Learning Via Multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Source%20Transfer%20Learning%20Via%20Multi-Kernel%20Support%20Vector%20Machine%20Plus%20for%20B-Mode%20Ultrasound-Based%20Computer-Aided%20Diagnosis%20of%20Liver%20Cancers&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhang,%20Huili&rft.date=2021-10-01&rft.volume=25&rft.issue=10&rft.spage=3874&rft.epage=3885&rft.pages=3874-3885&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3073812&rft_dat=%3Cproquest_RIE%3E2579440098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579440098&rft_id=info:pmid/33861717&rft_ieee_id=9406331&rfr_iscdi=true |