An Efficient VLSI Architecture for FastICA by Using the Algebraic Jacobi Method for EVD
Blind source separation (BSS) is a problem that appears in many research fields. Fast Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers have verified the effectiveness of the technique through the offline analysis of the public datasets. The dev...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.58287-58305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58305 |
---|---|
container_issue | |
container_start_page | 58287 |
container_title | IEEE access |
container_volume | 9 |
creator | Sajjad, Muhammad Yusoff, Mohd Zuki Yahya, Norashikin Haider, Ali Shahbaz |
description | Blind source separation (BSS) is a problem that appears in many research fields. Fast Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers have verified the effectiveness of the technique through the offline analysis of the public datasets. The development of a real-time portable system involving such a computationally complex analysis requires an efficient hardware implementation of FastICA. A Field programmable gate array (FPGA) and an application-specific integrated circuit (ASIC) are two promising hardware platforms to implement FastICA. This work proposes a new method, called ALgebraic Jacobi Method (ALJM), for performing eigenvalue decomposition (EVD) required for the implementation of FastICA. We use a simplification, a polynomial approximation, and the Newton-Raphson method for calculating the Jacobi rotation. In this way, we ensure hardware reusability between the EVD stage and the weight vector estimation (WVE) stage of FastICA which reduces the computational complexity and the power consumption, without compromising its computation speed. We evaluate the ALJM-based FastICA by performing BSS on the linear mixtures of the deterministic and the random signals and comparing the performance results with the existing methods. After verifying its functionality and numerical stability, we propose a scalable systolic processing array (SPA) for the ALJM-based FastICA and implement it on Spartan-6 FPGA. By comparing the existing implementations of FastICA, in terms of speed, area, and power, we conclude that the ALJM-based FastICA is one of the most efficient methods for prototyping and commercializing a real-time portable system comprising FastICA. |
doi_str_mv | 10.1109/ACCESS.2021.3072495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9400390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9400390</ieee_id><doaj_id>oai_doaj_org_article_06b49169fd224556bf4f00a4089926d9</doaj_id><sourcerecordid>2515854425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e687c6129574d26236a2f9f1b7b70e8086e3efe0afb2240ef6210b5ade3188633</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhUcIJKrSJ-jGEkuU4P8ZL0dDCkFBLELL0rI914mjMC62o6pvj9OpCku8sXV1zvGxv6a5JnhJCFYf-2FYbbdLiilZMtxSrsSr5oISqRZMMPn6n_Pb5irnA66rqyPRXjQ_-wmtvA8uwFTQ3Wa7Rn1y-1DAlVMC5GNCNyaX9dAj-4huc5h2qOwB9ccd2GSCQ1-Nizagb1D2cXwyrO4-vWveeHPMcPW8Xza3N6sfw5fF5vvnmrVZOI67sgDZtU4SWrvwkUrKpKFeeWJb22LocCeBgQdsvKWUY_CSEmyFGYGRrpOMXTbrOXeM5qDvU_hl0qOOJuinQUw7bVIJ7ggaS8tVfbYfa5QQ0nruMTa1h1JUjqpmvZ-z7lP8fYJc9CGe0lTrayqI6ATnVFQVm1UuxZwT-JdbCdZnIHoGos9A9DOQ6upm1wPY6PP5ux28OCsQyYnisj2zIUMopoQ4DfE0lWr98P_Wqr6e1QHgr0pxjJnC7A-L4KOJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854425</pqid></control><display><type>article</type><title>An Efficient VLSI Architecture for FastICA by Using the Algebraic Jacobi Method for EVD</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sajjad, Muhammad ; Yusoff, Mohd Zuki ; Yahya, Norashikin ; Haider, Ali Shahbaz</creator><creatorcontrib>Sajjad, Muhammad ; Yusoff, Mohd Zuki ; Yahya, Norashikin ; Haider, Ali Shahbaz</creatorcontrib><description>Blind source separation (BSS) is a problem that appears in many research fields. Fast Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers have verified the effectiveness of the technique through the offline analysis of the public datasets. The development of a real-time portable system involving such a computationally complex analysis requires an efficient hardware implementation of FastICA. A Field programmable gate array (FPGA) and an application-specific integrated circuit (ASIC) are two promising hardware platforms to implement FastICA. This work proposes a new method, called ALgebraic Jacobi Method (ALJM), for performing eigenvalue decomposition (EVD) required for the implementation of FastICA. We use a simplification, a polynomial approximation, and the Newton-Raphson method for calculating the Jacobi rotation. In this way, we ensure hardware reusability between the EVD stage and the weight vector estimation (WVE) stage of FastICA which reduces the computational complexity and the power consumption, without compromising its computation speed. We evaluate the ALJM-based FastICA by performing BSS on the linear mixtures of the deterministic and the random signals and comparing the performance results with the existing methods. After verifying its functionality and numerical stability, we propose a scalable systolic processing array (SPA) for the ALJM-based FastICA and implement it on Spartan-6 FPGA. By comparing the existing implementations of FastICA, in terms of speed, area, and power, we conclude that the ALJM-based FastICA is one of the most efficient methods for prototyping and commercializing a real-time portable system comprising FastICA.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3072495</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algebra ; Application specific integrated circuits ; Application-specific integrated circuit ; ASIC ; blind source separation ; commercialization ; Complexity ; Computer architecture ; Computer Science ; Computer Science, Information Systems ; Convergence ; eigenvalue decomposition ; Eigenvalues ; Engineering ; Engineering, Electrical & Electronic ; FastICA ; Field programmable gate arrays ; field-programmable gate array ; Fixed-point Designer ; Hardware ; independent components analysis ; Integrated circuits ; Jacobi method ; Jacobian matrices ; Mathematical analysis ; Newton-Raphson method ; Numerical stability ; Polynomials ; Power consumption ; Power management ; Prototyping ; Random signals ; Real time ; Real-time systems ; Science & Technology ; Signal processing ; Technology ; Telecommunications ; Very large scale integration ; VLSI</subject><ispartof>IEEE access, 2021, Vol.9, p.58287-58305</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000641946700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-e687c6129574d26236a2f9f1b7b70e8086e3efe0afb2240ef6210b5ade3188633</citedby><cites>FETCH-LOGICAL-c408t-e687c6129574d26236a2f9f1b7b70e8086e3efe0afb2240ef6210b5ade3188633</cites><orcidid>0000-0001-9306-6655 ; 0000-0002-9812-0435 ; 0000-0003-1316-9772 ; 0000-0002-4651-3157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9400390$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,2118,4028,27642,27932,27933,27934,39267,54942</link.rule.ids></links><search><creatorcontrib>Sajjad, Muhammad</creatorcontrib><creatorcontrib>Yusoff, Mohd Zuki</creatorcontrib><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Haider, Ali Shahbaz</creatorcontrib><title>An Efficient VLSI Architecture for FastICA by Using the Algebraic Jacobi Method for EVD</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>Blind source separation (BSS) is a problem that appears in many research fields. Fast Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers have verified the effectiveness of the technique through the offline analysis of the public datasets. The development of a real-time portable system involving such a computationally complex analysis requires an efficient hardware implementation of FastICA. A Field programmable gate array (FPGA) and an application-specific integrated circuit (ASIC) are two promising hardware platforms to implement FastICA. This work proposes a new method, called ALgebraic Jacobi Method (ALJM), for performing eigenvalue decomposition (EVD) required for the implementation of FastICA. We use a simplification, a polynomial approximation, and the Newton-Raphson method for calculating the Jacobi rotation. In this way, we ensure hardware reusability between the EVD stage and the weight vector estimation (WVE) stage of FastICA which reduces the computational complexity and the power consumption, without compromising its computation speed. We evaluate the ALJM-based FastICA by performing BSS on the linear mixtures of the deterministic and the random signals and comparing the performance results with the existing methods. After verifying its functionality and numerical stability, we propose a scalable systolic processing array (SPA) for the ALJM-based FastICA and implement it on Spartan-6 FPGA. By comparing the existing implementations of FastICA, in terms of speed, area, and power, we conclude that the ALJM-based FastICA is one of the most efficient methods for prototyping and commercializing a real-time portable system comprising FastICA.</description><subject>Algebra</subject><subject>Application specific integrated circuits</subject><subject>Application-specific integrated circuit</subject><subject>ASIC</subject><subject>blind source separation</subject><subject>commercialization</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Convergence</subject><subject>eigenvalue decomposition</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>FastICA</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate array</subject><subject>Fixed-point Designer</subject><subject>Hardware</subject><subject>independent components analysis</subject><subject>Integrated circuits</subject><subject>Jacobi method</subject><subject>Jacobian matrices</subject><subject>Mathematical analysis</subject><subject>Newton-Raphson method</subject><subject>Numerical stability</subject><subject>Polynomials</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Prototyping</subject><subject>Random signals</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Science & Technology</subject><subject>Signal processing</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Very large scale integration</subject><subject>VLSI</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1uEzEUhUcIJKrSJ-jGEkuU4P8ZL0dDCkFBLELL0rI914mjMC62o6pvj9OpCku8sXV1zvGxv6a5JnhJCFYf-2FYbbdLiilZMtxSrsSr5oISqRZMMPn6n_Pb5irnA66rqyPRXjQ_-wmtvA8uwFTQ3Wa7Rn1y-1DAlVMC5GNCNyaX9dAj-4huc5h2qOwB9ccd2GSCQ1-Nizagb1D2cXwyrO4-vWveeHPMcPW8Xza3N6sfw5fF5vvnmrVZOI67sgDZtU4SWrvwkUrKpKFeeWJb22LocCeBgQdsvKWUY_CSEmyFGYGRrpOMXTbrOXeM5qDvU_hl0qOOJuinQUw7bVIJ7ggaS8tVfbYfa5QQ0nruMTa1h1JUjqpmvZ-z7lP8fYJc9CGe0lTrayqI6ATnVFQVm1UuxZwT-JdbCdZnIHoGos9A9DOQ6upm1wPY6PP5ux28OCsQyYnisj2zIUMopoQ4DfE0lWr98P_Wqr6e1QHgr0pxjJnC7A-L4KOJ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sajjad, Muhammad</creator><creator>Yusoff, Mohd Zuki</creator><creator>Yahya, Norashikin</creator><creator>Haider, Ali Shahbaz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9306-6655</orcidid><orcidid>https://orcid.org/0000-0002-9812-0435</orcidid><orcidid>https://orcid.org/0000-0003-1316-9772</orcidid><orcidid>https://orcid.org/0000-0002-4651-3157</orcidid></search><sort><creationdate>2021</creationdate><title>An Efficient VLSI Architecture for FastICA by Using the Algebraic Jacobi Method for EVD</title><author>Sajjad, Muhammad ; Yusoff, Mohd Zuki ; Yahya, Norashikin ; Haider, Ali Shahbaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e687c6129574d26236a2f9f1b7b70e8086e3efe0afb2240ef6210b5ade3188633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Application specific integrated circuits</topic><topic>Application-specific integrated circuit</topic><topic>ASIC</topic><topic>blind source separation</topic><topic>commercialization</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Convergence</topic><topic>eigenvalue decomposition</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>FastICA</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate array</topic><topic>Fixed-point Designer</topic><topic>Hardware</topic><topic>independent components analysis</topic><topic>Integrated circuits</topic><topic>Jacobi method</topic><topic>Jacobian matrices</topic><topic>Mathematical analysis</topic><topic>Newton-Raphson method</topic><topic>Numerical stability</topic><topic>Polynomials</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Prototyping</topic><topic>Random signals</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Science & Technology</topic><topic>Signal processing</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Very large scale integration</topic><topic>VLSI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajjad, Muhammad</creatorcontrib><creatorcontrib>Yusoff, Mohd Zuki</creatorcontrib><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Haider, Ali Shahbaz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajjad, Muhammad</au><au>Yusoff, Mohd Zuki</au><au>Yahya, Norashikin</au><au>Haider, Ali Shahbaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient VLSI Architecture for FastICA by Using the Algebraic Jacobi Method for EVD</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>58287</spage><epage>58305</epage><pages>58287-58305</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Blind source separation (BSS) is a problem that appears in many research fields. Fast Independent components analysis (FastICA) is one of the techniques to solve the problem. The researchers have verified the effectiveness of the technique through the offline analysis of the public datasets. The development of a real-time portable system involving such a computationally complex analysis requires an efficient hardware implementation of FastICA. A Field programmable gate array (FPGA) and an application-specific integrated circuit (ASIC) are two promising hardware platforms to implement FastICA. This work proposes a new method, called ALgebraic Jacobi Method (ALJM), for performing eigenvalue decomposition (EVD) required for the implementation of FastICA. We use a simplification, a polynomial approximation, and the Newton-Raphson method for calculating the Jacobi rotation. In this way, we ensure hardware reusability between the EVD stage and the weight vector estimation (WVE) stage of FastICA which reduces the computational complexity and the power consumption, without compromising its computation speed. We evaluate the ALJM-based FastICA by performing BSS on the linear mixtures of the deterministic and the random signals and comparing the performance results with the existing methods. After verifying its functionality and numerical stability, we propose a scalable systolic processing array (SPA) for the ALJM-based FastICA and implement it on Spartan-6 FPGA. By comparing the existing implementations of FastICA, in terms of speed, area, and power, we conclude that the ALJM-based FastICA is one of the most efficient methods for prototyping and commercializing a real-time portable system comprising FastICA.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3072495</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9306-6655</orcidid><orcidid>https://orcid.org/0000-0002-9812-0435</orcidid><orcidid>https://orcid.org/0000-0003-1316-9772</orcidid><orcidid>https://orcid.org/0000-0002-4651-3157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.58287-58305 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9400390 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algebra Application specific integrated circuits Application-specific integrated circuit ASIC blind source separation commercialization Complexity Computer architecture Computer Science Computer Science, Information Systems Convergence eigenvalue decomposition Eigenvalues Engineering Engineering, Electrical & Electronic FastICA Field programmable gate arrays field-programmable gate array Fixed-point Designer Hardware independent components analysis Integrated circuits Jacobi method Jacobian matrices Mathematical analysis Newton-Raphson method Numerical stability Polynomials Power consumption Power management Prototyping Random signals Real time Real-time systems Science & Technology Signal processing Technology Telecommunications Very large scale integration VLSI |
title | An Efficient VLSI Architecture for FastICA by Using the Algebraic Jacobi Method for EVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T17%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20VLSI%20Architecture%20for%20FastICA%20by%20Using%20the%20Algebraic%20Jacobi%20Method%20for%20EVD&rft.jtitle=IEEE%20access&rft.au=Sajjad,%20Muhammad&rft.date=2021&rft.volume=9&rft.spage=58287&rft.epage=58305&rft.pages=58287-58305&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3072495&rft_dat=%3Cproquest_ieee_%3E2515854425%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515854425&rft_id=info:pmid/&rft_ieee_id=9400390&rft_doaj_id=oai_doaj_org_article_06b49169fd224556bf4f00a4089926d9&rfr_iscdi=true |