Slot Waveguides With Silicon-Rich Materials for Nonlinear Applications

Slot waveguides based on silicon-rich materials are proposed and experimentally demonstrated, which consist of a silicon-rich oxide (SRO) slot layer sandwiched by two silicon-rich nitride (SRN) layers. Measurements show the waveguides have a low propagation loss of \sim2.2 dB/cm and a 50-\mu \text{m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2021-06, Vol.13 (3), p.1-9
Hauptverfasser: Fu, Meicheng, Wang, Xiaoyan, Yi, Wenjun, Li, Xiujian, Frandsen, Lars, Guan, Xiaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title IEEE photonics journal
container_volume 13
creator Fu, Meicheng
Wang, Xiaoyan
Yi, Wenjun
Li, Xiujian
Frandsen, Lars
Guan, Xiaowei
description Slot waveguides based on silicon-rich materials are proposed and experimentally demonstrated, which consist of a silicon-rich oxide (SRO) slot layer sandwiched by two silicon-rich nitride (SRN) layers. Measurements show the waveguides have a low propagation loss of \sim2.2 dB/cm and a 50-\mu \text{m}-radius micro-ring resonator can achieve a loaded quality factor (Q_{load}) of \sim 10^5. Four-wave mixing experiments in the slot waveguides reveal a high nonlinearity \gamma of 16 W^{-1}m^{-1} of the waveguide and an averaged nonlinear index n_2 of 2.5 x 10^{-18} m ^2/W of the silicon-rich materials, 10 times larger than that of stoichiometric silicon nitride (Si_3N_4). Supercontinuum generation (SCG) experiments have shown a large fabrication tolerance of such slot waveguides that 1.2 octave spectral broadening in a 1510-nm-wide slot waveguide can be achieved while that is 0.9 octave in a slot waveguide with a width shrinking as large as 220 nm.
doi_str_mv 10.1109/JPHOT.2021.3072142
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9399784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9399784</ieee_id><doaj_id>oai_doaj_org_article_29fbd86cd6604bde828cd8564f7f5b68</doaj_id><sourcerecordid>2522215051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8d872b160d2564ac022ba3a0db5ed0e517b80d9e45db4ad614f7a131eba64dac3</originalsourceid><addsrcrecordid>eNo9kF9PwjAUxRejiYh-AX1Z4vOw7dqufSREBINiBMNj03-DkrliO0z89g5GeLo3N79zzs1JknsIBhAC_vT6MZkvBwggOMhBgSBGF0kPcpxngOLi8rwTcp3cxLgFgHJIeC8ZLyrfpCv5a9d7Z2xMV67ZpAtXOe3r7NPpTfomGxucrGJa-pC--7pytZUhHe52LSUb5-t4m1yVLWHvTrOffI2fl6NJNpu_TEfDWaYxIE3GDCuQghQYRCiWGiCkZC6BUcQaYAksFAOGW0yMwtJQiMtCwhxaJSk2Uuf9ZNr5Gi-3Yhfctwx_wksnjgcf1kKGxunKCsRLZRjVhlKAlbEMMW1YG1sWJVGUtV6Pndcu-J-9jY3Y-n2o2_cFIgghSACBLYU6SgcfY7DlORUCceheHLsXh-7FqftW9NCJnLX2LOA55wXD-T_7KX_t</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522215051</pqid></control><display><type>article</type><title>Slot Waveguides With Silicon-Rich Materials for Nonlinear Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, Meicheng ; Wang, Xiaoyan ; Yi, Wenjun ; Li, Xiujian ; Frandsen, Lars ; Guan, Xiaowei</creator><creatorcontrib>Fu, Meicheng ; Wang, Xiaoyan ; Yi, Wenjun ; Li, Xiujian ; Frandsen, Lars ; Guan, Xiaowei</creatorcontrib><description><![CDATA[Slot waveguides based on silicon-rich materials are proposed and experimentally demonstrated, which consist of a silicon-rich oxide (SRO) slot layer sandwiched by two silicon-rich nitride (SRN) layers. Measurements show the waveguides have a low propagation loss of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>2.2 dB/cm and a 50-<inline-formula><tex-math notation="LaTeX">\mu \text{m}</tex-math></inline-formula>-radius micro-ring resonator can achieve a loaded quality factor (<inline-formula><tex-math notation="LaTeX">Q_{load}</tex-math></inline-formula>) of <inline-formula><tex-math notation="LaTeX">\sim 10^5</tex-math></inline-formula>. Four-wave mixing experiments in the slot waveguides reveal a high nonlinearity <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula> of 16 W<inline-formula><tex-math notation="LaTeX">^{-1}</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^{-1}</tex-math></inline-formula> of the waveguide and an averaged nonlinear index <inline-formula><tex-math notation="LaTeX">n_2</tex-math></inline-formula> of 2.5 x 10<inline-formula><tex-math notation="LaTeX">^{-18}</tex-math></inline-formula> m <inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>/W of the silicon-rich materials, 10 times larger than that of stoichiometric silicon nitride (Si<inline-formula><tex-math notation="LaTeX">_3</tex-math></inline-formula>N<inline-formula><tex-math notation="LaTeX">_4</tex-math></inline-formula>). Supercontinuum generation (SCG) experiments have shown a large fabrication tolerance of such slot waveguides that 1.2 octave spectral broadening in a 1510-nm-wide slot waveguide can be achieved while that is 0.9 octave in a slot waveguide with a width shrinking as large as 220 nm.]]></description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2021.3072142</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annealing ; Four-wave mixing ; Integrated optics ; Loss measurement ; nonlinear photonics ; Nonlinearity ; Optical device fabrication ; Optical waveguides ; Photonic band gap ; Propagation losses ; Q factors ; Silicon ; Silicon nitride ; supercontinuum generation ; Wave propagation ; Waveguides</subject><ispartof>IEEE photonics journal, 2021-06, Vol.13 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8d872b160d2564ac022ba3a0db5ed0e517b80d9e45db4ad614f7a131eba64dac3</citedby><cites>FETCH-LOGICAL-c405t-8d872b160d2564ac022ba3a0db5ed0e517b80d9e45db4ad614f7a131eba64dac3</cites><orcidid>0000-0001-9244-7958 ; 0000-0002-3101-3088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9399784$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Fu, Meicheng</creatorcontrib><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Yi, Wenjun</creatorcontrib><creatorcontrib>Li, Xiujian</creatorcontrib><creatorcontrib>Frandsen, Lars</creatorcontrib><creatorcontrib>Guan, Xiaowei</creatorcontrib><title>Slot Waveguides With Silicon-Rich Materials for Nonlinear Applications</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description><![CDATA[Slot waveguides based on silicon-rich materials are proposed and experimentally demonstrated, which consist of a silicon-rich oxide (SRO) slot layer sandwiched by two silicon-rich nitride (SRN) layers. Measurements show the waveguides have a low propagation loss of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>2.2 dB/cm and a 50-<inline-formula><tex-math notation="LaTeX">\mu \text{m}</tex-math></inline-formula>-radius micro-ring resonator can achieve a loaded quality factor (<inline-formula><tex-math notation="LaTeX">Q_{load}</tex-math></inline-formula>) of <inline-formula><tex-math notation="LaTeX">\sim 10^5</tex-math></inline-formula>. Four-wave mixing experiments in the slot waveguides reveal a high nonlinearity <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula> of 16 W<inline-formula><tex-math notation="LaTeX">^{-1}</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^{-1}</tex-math></inline-formula> of the waveguide and an averaged nonlinear index <inline-formula><tex-math notation="LaTeX">n_2</tex-math></inline-formula> of 2.5 x 10<inline-formula><tex-math notation="LaTeX">^{-18}</tex-math></inline-formula> m <inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>/W of the silicon-rich materials, 10 times larger than that of stoichiometric silicon nitride (Si<inline-formula><tex-math notation="LaTeX">_3</tex-math></inline-formula>N<inline-formula><tex-math notation="LaTeX">_4</tex-math></inline-formula>). Supercontinuum generation (SCG) experiments have shown a large fabrication tolerance of such slot waveguides that 1.2 octave spectral broadening in a 1510-nm-wide slot waveguide can be achieved while that is 0.9 octave in a slot waveguide with a width shrinking as large as 220 nm.]]></description><subject>Annealing</subject><subject>Four-wave mixing</subject><subject>Integrated optics</subject><subject>Loss measurement</subject><subject>nonlinear photonics</subject><subject>Nonlinearity</subject><subject>Optical device fabrication</subject><subject>Optical waveguides</subject><subject>Photonic band gap</subject><subject>Propagation losses</subject><subject>Q factors</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>supercontinuum generation</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kF9PwjAUxRejiYh-AX1Z4vOw7dqufSREBINiBMNj03-DkrliO0z89g5GeLo3N79zzs1JknsIBhAC_vT6MZkvBwggOMhBgSBGF0kPcpxngOLi8rwTcp3cxLgFgHJIeC8ZLyrfpCv5a9d7Z2xMV67ZpAtXOe3r7NPpTfomGxucrGJa-pC--7pytZUhHe52LSUb5-t4m1yVLWHvTrOffI2fl6NJNpu_TEfDWaYxIE3GDCuQghQYRCiWGiCkZC6BUcQaYAksFAOGW0yMwtJQiMtCwhxaJSk2Uuf9ZNr5Gi-3Yhfctwx_wksnjgcf1kKGxunKCsRLZRjVhlKAlbEMMW1YG1sWJVGUtV6Pndcu-J-9jY3Y-n2o2_cFIgghSACBLYU6SgcfY7DlORUCceheHLsXh-7FqftW9NCJnLX2LOA55wXD-T_7KX_t</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fu, Meicheng</creator><creator>Wang, Xiaoyan</creator><creator>Yi, Wenjun</creator><creator>Li, Xiujian</creator><creator>Frandsen, Lars</creator><creator>Guan, Xiaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9244-7958</orcidid><orcidid>https://orcid.org/0000-0002-3101-3088</orcidid></search><sort><creationdate>20210601</creationdate><title>Slot Waveguides With Silicon-Rich Materials for Nonlinear Applications</title><author>Fu, Meicheng ; Wang, Xiaoyan ; Yi, Wenjun ; Li, Xiujian ; Frandsen, Lars ; Guan, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8d872b160d2564ac022ba3a0db5ed0e517b80d9e45db4ad614f7a131eba64dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Four-wave mixing</topic><topic>Integrated optics</topic><topic>Loss measurement</topic><topic>nonlinear photonics</topic><topic>Nonlinearity</topic><topic>Optical device fabrication</topic><topic>Optical waveguides</topic><topic>Photonic band gap</topic><topic>Propagation losses</topic><topic>Q factors</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>supercontinuum generation</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Meicheng</creatorcontrib><creatorcontrib>Wang, Xiaoyan</creatorcontrib><creatorcontrib>Yi, Wenjun</creatorcontrib><creatorcontrib>Li, Xiujian</creatorcontrib><creatorcontrib>Frandsen, Lars</creatorcontrib><creatorcontrib>Guan, Xiaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Meicheng</au><au>Wang, Xiaoyan</au><au>Yi, Wenjun</au><au>Li, Xiujian</au><au>Frandsen, Lars</au><au>Guan, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slot Waveguides With Silicon-Rich Materials for Nonlinear Applications</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract><![CDATA[Slot waveguides based on silicon-rich materials are proposed and experimentally demonstrated, which consist of a silicon-rich oxide (SRO) slot layer sandwiched by two silicon-rich nitride (SRN) layers. Measurements show the waveguides have a low propagation loss of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>2.2 dB/cm and a 50-<inline-formula><tex-math notation="LaTeX">\mu \text{m}</tex-math></inline-formula>-radius micro-ring resonator can achieve a loaded quality factor (<inline-formula><tex-math notation="LaTeX">Q_{load}</tex-math></inline-formula>) of <inline-formula><tex-math notation="LaTeX">\sim 10^5</tex-math></inline-formula>. Four-wave mixing experiments in the slot waveguides reveal a high nonlinearity <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula> of 16 W<inline-formula><tex-math notation="LaTeX">^{-1}</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^{-1}</tex-math></inline-formula> of the waveguide and an averaged nonlinear index <inline-formula><tex-math notation="LaTeX">n_2</tex-math></inline-formula> of 2.5 x 10<inline-formula><tex-math notation="LaTeX">^{-18}</tex-math></inline-formula> m <inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula>/W of the silicon-rich materials, 10 times larger than that of stoichiometric silicon nitride (Si<inline-formula><tex-math notation="LaTeX">_3</tex-math></inline-formula>N<inline-formula><tex-math notation="LaTeX">_4</tex-math></inline-formula>). Supercontinuum generation (SCG) experiments have shown a large fabrication tolerance of such slot waveguides that 1.2 octave spectral broadening in a 1510-nm-wide slot waveguide can be achieved while that is 0.9 octave in a slot waveguide with a width shrinking as large as 220 nm.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2021.3072142</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9244-7958</orcidid><orcidid>https://orcid.org/0000-0002-3101-3088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2021-06, Vol.13 (3), p.1-9
issn 1943-0655
1943-0647
language eng
recordid cdi_ieee_primary_9399784
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Annealing
Four-wave mixing
Integrated optics
Loss measurement
nonlinear photonics
Nonlinearity
Optical device fabrication
Optical waveguides
Photonic band gap
Propagation losses
Q factors
Silicon
Silicon nitride
supercontinuum generation
Wave propagation
Waveguides
title Slot Waveguides With Silicon-Rich Materials for Nonlinear Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slot%20Waveguides%20With%20Silicon-Rich%20Materials%20for%20Nonlinear%20Applications&rft.jtitle=IEEE%20photonics%20journal&rft.au=Fu,%20Meicheng&rft.date=2021-06-01&rft.volume=13&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2021.3072142&rft_dat=%3Cproquest_ieee_%3E2522215051%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522215051&rft_id=info:pmid/&rft_ieee_id=9399784&rft_doaj_id=oai_doaj_org_article_29fbd86cd6604bde828cd8564f7f5b68&rfr_iscdi=true