A Fault Modeling Based Runtime Diagnostic Mechanism for Vehicular Distributed Control Systems

This paper presents a study about a runtime mechanism to monitor the performance degradation in intra-vehicular networks. The proposed mechanism focuses on the integration of fault modeling in communication protocols, as non-functional requirements (NFR), using aspect-oriented modeling (AOM), to mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.7220-7232
Hauptverfasser: Roque, Alexandre Dos Santos, Jazdi, Nasser, De Freitas, Edison Pignaton, Pereira, Carlos Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7232
container_issue 7
container_start_page 7220
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Roque, Alexandre Dos Santos
Jazdi, Nasser
De Freitas, Edison Pignaton
Pereira, Carlos Eduardo
description This paper presents a study about a runtime mechanism to monitor the performance degradation in intra-vehicular networks. The proposed mechanism focuses on the integration of fault modeling in communication protocols, as non-functional requirements (NFR), using aspect-oriented modeling (AOM), to model the performance degradation generated by faults, linking test and design phases of distributed control systems. A case study analyzing the mechanism performance in both CAN and CAN-FD protocols was conducted considering the NFR specification related to fault disturbances. In order to evaluate and simulate the mechanism under real fault scenarios, an active suspension control system was considered as an example of a critical control system and faults were injected using the hardware Vector VH6501 (CAN disturbance interface). The network performance analysis was made based on the software Vector CANoe considering different network busloads and CAN/CAN-FD rates between 1 to 4 Mbps. Results show that the mechanism efficiently detects anomalous events on performance with short response time with busloads up to 30%. The performed experiments show better performance on CAN-FD registering lower average jitter during fault injection in all busloads tested scenarios.
doi_str_mv 10.1109/TITS.2021.3067552
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9397435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9397435</ieee_id><sourcerecordid>2688703725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-94114411c3c29dd166f8ddfe1cbcdefeb9309c3490e1673b41265d830eaad0a53</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4soOKcfQHwJ-NyZNE3bPM7pdLAhuOmbhDS5bhltM5P0Yd_elg0fjruE3_8OflF0T_CEEMyfNovNepLghEwoznLGkotoRBgrYoxJdjnMSRpzzPB1dOP9vv9NGSGj6GeK5rKrA1pZDbVpt-hZetDos2uDaQC9GLltrQ9GoRWonWyNb1BlHfqGnVFdLV2P-OBM2YU-NrNtcLZG66MP0Pjb6KqStYe7cx9HX_PXzew9Xn68LWbTZawSTkPMU0LSvhTt31qTLKsKrSsgqlQaKig5xVzRlGMgWU7LlCQZ0wXFIKXGktFx9Hjae3D2twMfxN52ru1PiiQrihzTPBkocqKUs947qMTBmUa6oyBYDBbFYFEMFsXZYp95OGUMAPzznPI8pYz-AW3vbnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703725</pqid></control><display><type>article</type><title>A Fault Modeling Based Runtime Diagnostic Mechanism for Vehicular Distributed Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Roque, Alexandre Dos Santos ; Jazdi, Nasser ; De Freitas, Edison Pignaton ; Pereira, Carlos Eduardo</creator><creatorcontrib>Roque, Alexandre Dos Santos ; Jazdi, Nasser ; De Freitas, Edison Pignaton ; Pereira, Carlos Eduardo</creatorcontrib><description>This paper presents a study about a runtime mechanism to monitor the performance degradation in intra-vehicular networks. The proposed mechanism focuses on the integration of fault modeling in communication protocols, as non-functional requirements (NFR), using aspect-oriented modeling (AOM), to model the performance degradation generated by faults, linking test and design phases of distributed control systems. A case study analyzing the mechanism performance in both CAN and CAN-FD protocols was conducted considering the NFR specification related to fault disturbances. In order to evaluate and simulate the mechanism under real fault scenarios, an active suspension control system was considered as an example of a critical control system and faults were injected using the hardware Vector VH6501 (CAN disturbance interface). The network performance analysis was made based on the software Vector CANoe considering different network busloads and CAN/CAN-FD rates between 1 to 4 Mbps. Results show that the mechanism efficiently detects anomalous events on performance with short response time with busloads up to 30%. The performed experiments show better performance on CAN-FD registering lower average jitter during fault injection in all busloads tested scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3067552</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Automotive engineering ; communication protocols ; Control systems design ; Data models ; Decentralized control ; Degradation ; Distributed control systems ; fault modeling ; Modelling ; Performance degradation ; Performance diagnostic mechanisms ; Protocols ; Response time ; Run time (computers) ; Runtime ; Task analysis ; Vehicles ; vehicular control systems ; Vibration</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7220-7232</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-94114411c3c29dd166f8ddfe1cbcdefeb9309c3490e1673b41265d830eaad0a53</citedby><cites>FETCH-LOGICAL-c293t-94114411c3c29dd166f8ddfe1cbcdefeb9309c3490e1673b41265d830eaad0a53</cites><orcidid>0000-0003-4655-8889 ; 0000-0001-6722-0911 ; 0000-0001-5422-5414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9397435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9397435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roque, Alexandre Dos Santos</creatorcontrib><creatorcontrib>Jazdi, Nasser</creatorcontrib><creatorcontrib>De Freitas, Edison Pignaton</creatorcontrib><creatorcontrib>Pereira, Carlos Eduardo</creatorcontrib><title>A Fault Modeling Based Runtime Diagnostic Mechanism for Vehicular Distributed Control Systems</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper presents a study about a runtime mechanism to monitor the performance degradation in intra-vehicular networks. The proposed mechanism focuses on the integration of fault modeling in communication protocols, as non-functional requirements (NFR), using aspect-oriented modeling (AOM), to model the performance degradation generated by faults, linking test and design phases of distributed control systems. A case study analyzing the mechanism performance in both CAN and CAN-FD protocols was conducted considering the NFR specification related to fault disturbances. In order to evaluate and simulate the mechanism under real fault scenarios, an active suspension control system was considered as an example of a critical control system and faults were injected using the hardware Vector VH6501 (CAN disturbance interface). The network performance analysis was made based on the software Vector CANoe considering different network busloads and CAN/CAN-FD rates between 1 to 4 Mbps. Results show that the mechanism efficiently detects anomalous events on performance with short response time with busloads up to 30%. The performed experiments show better performance on CAN-FD registering lower average jitter during fault injection in all busloads tested scenarios.</description><subject>Active control</subject><subject>Automotive engineering</subject><subject>communication protocols</subject><subject>Control systems design</subject><subject>Data models</subject><subject>Decentralized control</subject><subject>Degradation</subject><subject>Distributed control systems</subject><subject>fault modeling</subject><subject>Modelling</subject><subject>Performance degradation</subject><subject>Performance diagnostic mechanisms</subject><subject>Protocols</subject><subject>Response time</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>Task analysis</subject><subject>Vehicles</subject><subject>vehicular control systems</subject><subject>Vibration</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4soOKcfQHwJ-NyZNE3bPM7pdLAhuOmbhDS5bhltM5P0Yd_elg0fjruE3_8OflF0T_CEEMyfNovNepLghEwoznLGkotoRBgrYoxJdjnMSRpzzPB1dOP9vv9NGSGj6GeK5rKrA1pZDbVpt-hZetDos2uDaQC9GLltrQ9GoRWonWyNb1BlHfqGnVFdLV2P-OBM2YU-NrNtcLZG66MP0Pjb6KqStYe7cx9HX_PXzew9Xn68LWbTZawSTkPMU0LSvhTt31qTLKsKrSsgqlQaKig5xVzRlGMgWU7LlCQZ0wXFIKXGktFx9Hjae3D2twMfxN52ru1PiiQrihzTPBkocqKUs947qMTBmUa6oyBYDBbFYFEMFsXZYp95OGUMAPzznPI8pYz-AW3vbnM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Roque, Alexandre Dos Santos</creator><creator>Jazdi, Nasser</creator><creator>De Freitas, Edison Pignaton</creator><creator>Pereira, Carlos Eduardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4655-8889</orcidid><orcidid>https://orcid.org/0000-0001-6722-0911</orcidid><orcidid>https://orcid.org/0000-0001-5422-5414</orcidid></search><sort><creationdate>20220701</creationdate><title>A Fault Modeling Based Runtime Diagnostic Mechanism for Vehicular Distributed Control Systems</title><author>Roque, Alexandre Dos Santos ; Jazdi, Nasser ; De Freitas, Edison Pignaton ; Pereira, Carlos Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-94114411c3c29dd166f8ddfe1cbcdefeb9309c3490e1673b41265d830eaad0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Automotive engineering</topic><topic>communication protocols</topic><topic>Control systems design</topic><topic>Data models</topic><topic>Decentralized control</topic><topic>Degradation</topic><topic>Distributed control systems</topic><topic>fault modeling</topic><topic>Modelling</topic><topic>Performance degradation</topic><topic>Performance diagnostic mechanisms</topic><topic>Protocols</topic><topic>Response time</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>Task analysis</topic><topic>Vehicles</topic><topic>vehicular control systems</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roque, Alexandre Dos Santos</creatorcontrib><creatorcontrib>Jazdi, Nasser</creatorcontrib><creatorcontrib>De Freitas, Edison Pignaton</creatorcontrib><creatorcontrib>Pereira, Carlos Eduardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roque, Alexandre Dos Santos</au><au>Jazdi, Nasser</au><au>De Freitas, Edison Pignaton</au><au>Pereira, Carlos Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fault Modeling Based Runtime Diagnostic Mechanism for Vehicular Distributed Control Systems</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>7220</spage><epage>7232</epage><pages>7220-7232</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper presents a study about a runtime mechanism to monitor the performance degradation in intra-vehicular networks. The proposed mechanism focuses on the integration of fault modeling in communication protocols, as non-functional requirements (NFR), using aspect-oriented modeling (AOM), to model the performance degradation generated by faults, linking test and design phases of distributed control systems. A case study analyzing the mechanism performance in both CAN and CAN-FD protocols was conducted considering the NFR specification related to fault disturbances. In order to evaluate and simulate the mechanism under real fault scenarios, an active suspension control system was considered as an example of a critical control system and faults were injected using the hardware Vector VH6501 (CAN disturbance interface). The network performance analysis was made based on the software Vector CANoe considering different network busloads and CAN/CAN-FD rates between 1 to 4 Mbps. Results show that the mechanism efficiently detects anomalous events on performance with short response time with busloads up to 30%. The performed experiments show better performance on CAN-FD registering lower average jitter during fault injection in all busloads tested scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3067552</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4655-8889</orcidid><orcidid>https://orcid.org/0000-0001-6722-0911</orcidid><orcidid>https://orcid.org/0000-0001-5422-5414</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7220-7232
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_9397435
source IEEE Electronic Library (IEL)
subjects Active control
Automotive engineering
communication protocols
Control systems design
Data models
Decentralized control
Degradation
Distributed control systems
fault modeling
Modelling
Performance degradation
Performance diagnostic mechanisms
Protocols
Response time
Run time (computers)
Runtime
Task analysis
Vehicles
vehicular control systems
Vibration
title A Fault Modeling Based Runtime Diagnostic Mechanism for Vehicular Distributed Control Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fault%20Modeling%20Based%20Runtime%20Diagnostic%20Mechanism%20for%20Vehicular%20Distributed%20Control%20Systems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Roque,%20Alexandre%20Dos%20Santos&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=7220&rft.epage=7232&rft.pages=7220-7232&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3067552&rft_dat=%3Cproquest_RIE%3E2688703725%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703725&rft_id=info:pmid/&rft_ieee_id=9397435&rfr_iscdi=true