End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels

In this paper, a novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels. The basic idea lies in the use of artificial neural networks (ANNs) to replace t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-09, Vol.20 (9), p.5531-5542
Hauptverfasser: Xue, Songyan, Ma, Yi, Yi, Na
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5542
container_issue 9
container_start_page 5531
container_title IEEE transactions on wireless communications
container_volume 20
creator Xue, Songyan
Ma, Yi
Yi, Na
description In this paper, a novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels. The basic idea lies in the use of artificial neural networks (ANNs) to replace traditional communication modules at both transmitter and receiver sides. More specifically, the transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design; and the non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities. The entire JTRD-Net can be trained from end to end to adapt to channel statistics through deep learning. After training, JTRD-Net can work efficiently in a non-coherent manner without requiring any levels of channel state information (CSI). In addition to the network architecture, a novel weight-initialization method, namely symmetrical-interval initialization, is proposed for JTRD-Net. It is shown that the symmetrical-interval initialization outperforms the conventional method (e.g. Xavier initialization) in terms of well-balanced convergence-rate among users. Simulation results show that the proposed JTRD-Net approach takes significant advantages in terms of reliability and scalability over baseline schemes on both i.i.d. complex Gaussian channels and spatially-correlated channels.
doi_str_mv 10.1109/TWC.2021.3068302
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9394761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9394761</ieee_id><sourcerecordid>2571224412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b93a23f1577f9e0c5a64e868fada9e9dc8db962786beb4f6df964ed2a30f02ff3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxosoOKd3wUvAc2Y-2rQ5St10sjnQDY8lbd9smV06k07wvzdlw9PzwvPxwi-KbikZUUrkw_IzHzHC6IgTkXHCzqIBTZIMMxZn5_3NBaYsFZfRlfdbQmgqkmQQNWNb467FQdAMlLPGrpFuHVrtG2O_0HyFP6bzBXptje3Q0inrd6brwCEVGm-txXm7AQfBfIcKzE9wnsCbtUXGoomq-718o6yFxl9HF1o1Hm5OOoxWk_Eyf8GzxfM0f5zhikna4VJyxbimSZpqCaRKlIghE5lWtZIg6yqrSylYmokSyliLWssQqJniRBOmNR9G98fdvWu_D-C7YtsenA0vC5akNCCJKQspckxVrvXegS72zuyU-y0oKXqmRWBa9EyLE9NQuTtWDAD8xyWXcSoo_wPxAnJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571224412</pqid></control><display><type>article</type><title>End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Songyan ; Ma, Yi ; Yi, Na</creator><creatorcontrib>Xue, Songyan ; Ma, Yi ; Yi, Na</creatorcontrib><description>In this paper, a novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels. The basic idea lies in the use of artificial neural networks (ANNs) to replace traditional communication modules at both transmitter and receiver sides. More specifically, the transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design; and the non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities. The entire JTRD-Net can be trained from end to end to adapt to channel statistics through deep learning. After training, JTRD-Net can work efficiently in a non-coherent manner without requiring any levels of channel state information (CSI). In addition to the network architecture, a novel weight-initialization method, namely symmetrical-interval initialization, is proposed for JTRD-Net. It is shown that the symmetrical-interval initialization outperforms the conventional method (e.g. Xavier initialization) in terms of well-balanced convergence-rate among users. Simulation results show that the proposed JTRD-Net approach takes significant advantages in terms of reliability and scalability over baseline schemes on both i.i.d. complex Gaussian channels and spatially-correlated channels.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3068302</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Channels ; Coherence ; Computer architecture ; Deep learning ; End-to-end learning ; Fading ; joint transmitter and receiver design ; MIMO communication ; Multiuser detection ; multiuser detection (MUD) ; multiuser single-input multiple-output (MU-SIMO) ; Neural networks ; Receivers ; Training ; Transmitters ; Uplink ; Waveforms ; weight initialization ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-09, Vol.20 (9), p.5531-5542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b93a23f1577f9e0c5a64e868fada9e9dc8db962786beb4f6df964ed2a30f02ff3</citedby><cites>FETCH-LOGICAL-c291t-b93a23f1577f9e0c5a64e868fada9e9dc8db962786beb4f6df964ed2a30f02ff3</cites><orcidid>0000-0002-6715-4309 ; 0000-0002-9070-1999 ; 0000-0002-2421-9504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9394761$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9394761$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Songyan</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><creatorcontrib>Yi, Na</creatorcontrib><title>End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, a novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels. The basic idea lies in the use of artificial neural networks (ANNs) to replace traditional communication modules at both transmitter and receiver sides. More specifically, the transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design; and the non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities. The entire JTRD-Net can be trained from end to end to adapt to channel statistics through deep learning. After training, JTRD-Net can work efficiently in a non-coherent manner without requiring any levels of channel state information (CSI). In addition to the network architecture, a novel weight-initialization method, namely symmetrical-interval initialization, is proposed for JTRD-Net. It is shown that the symmetrical-interval initialization outperforms the conventional method (e.g. Xavier initialization) in terms of well-balanced convergence-rate among users. Simulation results show that the proposed JTRD-Net approach takes significant advantages in terms of reliability and scalability over baseline schemes on both i.i.d. complex Gaussian channels and spatially-correlated channels.</description><subject>Artificial neural networks</subject><subject>Channels</subject><subject>Coherence</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>End-to-end learning</subject><subject>Fading</subject><subject>joint transmitter and receiver design</subject><subject>MIMO communication</subject><subject>Multiuser detection</subject><subject>multiuser detection (MUD)</subject><subject>multiuser single-input multiple-output (MU-SIMO)</subject><subject>Neural networks</subject><subject>Receivers</subject><subject>Training</subject><subject>Transmitters</subject><subject>Uplink</subject><subject>Waveforms</subject><subject>weight initialization</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYxosoOKd3wUvAc2Y-2rQ5St10sjnQDY8lbd9smV06k07wvzdlw9PzwvPxwi-KbikZUUrkw_IzHzHC6IgTkXHCzqIBTZIMMxZn5_3NBaYsFZfRlfdbQmgqkmQQNWNb467FQdAMlLPGrpFuHVrtG2O_0HyFP6bzBXptje3Q0inrd6brwCEVGm-txXm7AQfBfIcKzE9wnsCbtUXGoomq-718o6yFxl9HF1o1Hm5OOoxWk_Eyf8GzxfM0f5zhikna4VJyxbimSZpqCaRKlIghE5lWtZIg6yqrSylYmokSyliLWssQqJniRBOmNR9G98fdvWu_D-C7YtsenA0vC5akNCCJKQspckxVrvXegS72zuyU-y0oKXqmRWBa9EyLE9NQuTtWDAD8xyWXcSoo_wPxAnJc</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Xue, Songyan</creator><creator>Ma, Yi</creator><creator>Yi, Na</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6715-4309</orcidid><orcidid>https://orcid.org/0000-0002-9070-1999</orcidid><orcidid>https://orcid.org/0000-0002-2421-9504</orcidid></search><sort><creationdate>202109</creationdate><title>End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels</title><author>Xue, Songyan ; Ma, Yi ; Yi, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b93a23f1577f9e0c5a64e868fada9e9dc8db962786beb4f6df964ed2a30f02ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Channels</topic><topic>Coherence</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>End-to-end learning</topic><topic>Fading</topic><topic>joint transmitter and receiver design</topic><topic>MIMO communication</topic><topic>Multiuser detection</topic><topic>multiuser detection (MUD)</topic><topic>multiuser single-input multiple-output (MU-SIMO)</topic><topic>Neural networks</topic><topic>Receivers</topic><topic>Training</topic><topic>Transmitters</topic><topic>Uplink</topic><topic>Waveforms</topic><topic>weight initialization</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Songyan</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><creatorcontrib>Yi, Na</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Songyan</au><au>Ma, Yi</au><au>Yi, Na</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-09</date><risdate>2021</risdate><volume>20</volume><issue>9</issue><spage>5531</spage><epage>5542</epage><pages>5531-5542</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, a novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels. The basic idea lies in the use of artificial neural networks (ANNs) to replace traditional communication modules at both transmitter and receiver sides. More specifically, the transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design; and the non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities. The entire JTRD-Net can be trained from end to end to adapt to channel statistics through deep learning. After training, JTRD-Net can work efficiently in a non-coherent manner without requiring any levels of channel state information (CSI). In addition to the network architecture, a novel weight-initialization method, namely symmetrical-interval initialization, is proposed for JTRD-Net. It is shown that the symmetrical-interval initialization outperforms the conventional method (e.g. Xavier initialization) in terms of well-balanced convergence-rate among users. Simulation results show that the proposed JTRD-Net approach takes significant advantages in terms of reliability and scalability over baseline schemes on both i.i.d. complex Gaussian channels and spatially-correlated channels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3068302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6715-4309</orcidid><orcidid>https://orcid.org/0000-0002-9070-1999</orcidid><orcidid>https://orcid.org/0000-0002-2421-9504</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-09, Vol.20 (9), p.5531-5542
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_9394761
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Channels
Coherence
Computer architecture
Deep learning
End-to-end learning
Fading
joint transmitter and receiver design
MIMO communication
Multiuser detection
multiuser detection (MUD)
multiuser single-input multiple-output (MU-SIMO)
Neural networks
Receivers
Training
Transmitters
Uplink
Waveforms
weight initialization
Wireless communication
title End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-End%20Learning%20for%20Uplink%20MU-SIMO%20Joint%20Transmitter%20and%20Non-Coherent%20Receiver%20Design%20in%20Fading%20Channels&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Xue,%20Songyan&rft.date=2021-09&rft.volume=20&rft.issue=9&rft.spage=5531&rft.epage=5542&rft.pages=5531-5542&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3068302&rft_dat=%3Cproquest_RIE%3E2571224412%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571224412&rft_id=info:pmid/&rft_ieee_id=9394761&rfr_iscdi=true