650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types
Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial fou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-05, Vol.68 (5), p.2395-2400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2400 |
---|---|
container_issue | 5 |
container_start_page | 2395 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Agarwal, Aditi Han, Kijeong Baliga, B. J. |
description | Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design. |
doi_str_mv | 10.1109/TED.2021.3067921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9393493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9393493</ieee_id><sourcerecordid>2517033971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxTdGExG9m3jZxPPifrfrTSsChgQiVY_NskxDSWlxt6D895ZAPE0m896blx9Ct4z2GKPmIe2_9DjlrCeojgxnZ6jDlIqI0VKfow6lLCZGxOISXYWwalctJe-goBUln1gOyaxI8LS0lfV4VO3Ah6KuSLK0VQUlntY_4PHb8-y1nwb8VTRLrBSp1nhgG8CT32IBj_gdStsUO8BT8Hnt17ZygOscp0sPgBMoS5zuNxCu0UVuywA3p9lFH21sMiTjyWCUPI2J44Y1xAlqIj2PFed5nNu2sAbjlItZni_UYiG0NrFmc8qMFNRJx5RUkkvW3pzRILro_pi78fX3FkKTreqtr9qXGVcsokKYiLUqelQ5X4fgIc82vlhbv88YzQ5osxZtdkCbndC2lrujpQCAf7kRRkgjxB8d-XET</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517033971</pqid></control><display><type>article</type><title>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</title><source>IEEE Electronic Library (IEL)</source><creator>Agarwal, Aditi ; Han, Kijeong ; Baliga, B. J.</creator><creatorcontrib>Agarwal, Aditi ; Han, Kijeong ; Baliga, B. J.</creatorcontrib><description>Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3067921</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4H-silicon carbide (SiC) ; Breakdown ; cell design ; Field effect transistors ; hexagonal ; Hexagonal cells ; inversion ; junction barrier Schottky field effect transistor (JBSFET) ; Layout ; Layouts ; Leakage current ; Leakage currents ; linear ; Logic gates ; MOSFET ; octagonal ; Schottky barriers ; Schottky diodes ; Semiconductor devices ; Silicon carbide ; Transistors ; Voltage drop</subject><ispartof>IEEE transactions on electron devices, 2021-05, Vol.68 (5), p.2395-2400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</citedby><cites>FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</cites><orcidid>0000-0001-9171-0080 ; 0000-0003-4594-3398 ; 0000-0002-1006-0694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9393493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9393493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agarwal, Aditi</creatorcontrib><creatorcontrib>Han, Kijeong</creatorcontrib><creatorcontrib>Baliga, B. J.</creatorcontrib><title>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.</description><subject>4H-silicon carbide (SiC)</subject><subject>Breakdown</subject><subject>cell design</subject><subject>Field effect transistors</subject><subject>hexagonal</subject><subject>Hexagonal cells</subject><subject>inversion</subject><subject>junction barrier Schottky field effect transistor (JBSFET)</subject><subject>Layout</subject><subject>Layouts</subject><subject>Leakage current</subject><subject>Leakage currents</subject><subject>linear</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>octagonal</subject><subject>Schottky barriers</subject><subject>Schottky diodes</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>Transistors</subject><subject>Voltage drop</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PwkAQxTdGExG9m3jZxPPifrfrTSsChgQiVY_NskxDSWlxt6D895ZAPE0m896blx9Ct4z2GKPmIe2_9DjlrCeojgxnZ6jDlIqI0VKfow6lLCZGxOISXYWwalctJe-goBUln1gOyaxI8LS0lfV4VO3Ah6KuSLK0VQUlntY_4PHb8-y1nwb8VTRLrBSp1nhgG8CT32IBj_gdStsUO8BT8Hnt17ZygOscp0sPgBMoS5zuNxCu0UVuywA3p9lFH21sMiTjyWCUPI2J44Y1xAlqIj2PFed5nNu2sAbjlItZni_UYiG0NrFmc8qMFNRJx5RUkkvW3pzRILro_pi78fX3FkKTreqtr9qXGVcsokKYiLUqelQ5X4fgIc82vlhbv88YzQ5osxZtdkCbndC2lrujpQCAf7kRRkgjxB8d-XET</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Agarwal, Aditi</creator><creator>Han, Kijeong</creator><creator>Baliga, B. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9171-0080</orcidid><orcidid>https://orcid.org/0000-0003-4594-3398</orcidid><orcidid>https://orcid.org/0000-0002-1006-0694</orcidid></search><sort><creationdate>20210501</creationdate><title>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</title><author>Agarwal, Aditi ; Han, Kijeong ; Baliga, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4H-silicon carbide (SiC)</topic><topic>Breakdown</topic><topic>cell design</topic><topic>Field effect transistors</topic><topic>hexagonal</topic><topic>Hexagonal cells</topic><topic>inversion</topic><topic>junction barrier Schottky field effect transistor (JBSFET)</topic><topic>Layout</topic><topic>Layouts</topic><topic>Leakage current</topic><topic>Leakage currents</topic><topic>linear</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>octagonal</topic><topic>Schottky barriers</topic><topic>Schottky diodes</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>Transistors</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Aditi</creatorcontrib><creatorcontrib>Han, Kijeong</creatorcontrib><creatorcontrib>Baliga, B. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agarwal, Aditi</au><au>Han, Kijeong</au><au>Baliga, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>2395</spage><epage>2400</epage><pages>2395-2400</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3067921</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9171-0080</orcidid><orcidid>https://orcid.org/0000-0003-4594-3398</orcidid><orcidid>https://orcid.org/0000-0002-1006-0694</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-05, Vol.68 (5), p.2395-2400 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9393493 |
source | IEEE Electronic Library (IEL) |
subjects | 4H-silicon carbide (SiC) Breakdown cell design Field effect transistors hexagonal Hexagonal cells inversion junction barrier Schottky field effect transistor (JBSFET) Layout Layouts Leakage current Leakage currents linear Logic gates MOSFET octagonal Schottky barriers Schottky diodes Semiconductor devices Silicon carbide Transistors Voltage drop |
title | 650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=650-V%204H-SiC%20Planar%20Inversion-Channel%20Power%20JBSFETs%20With%2055-nm%20Gate%20Oxide:%20Relative%20Performance%20of%20Three%20Cell%20Types&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Agarwal,%20Aditi&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=2395&rft.epage=2400&rft.pages=2395-2400&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3067921&rft_dat=%3Cproquest_RIE%3E2517033971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517033971&rft_id=info:pmid/&rft_ieee_id=9393493&rfr_iscdi=true |