650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types

Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-05, Vol.68 (5), p.2395-2400
Hauptverfasser: Agarwal, Aditi, Han, Kijeong, Baliga, B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2400
container_issue 5
container_start_page 2395
container_title IEEE transactions on electron devices
container_volume 68
creator Agarwal, Aditi
Han, Kijeong
Baliga, B. J.
description Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.
doi_str_mv 10.1109/TED.2021.3067921
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9393493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9393493</ieee_id><sourcerecordid>2517033971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxTdGExG9m3jZxPPifrfrTSsChgQiVY_NskxDSWlxt6D895ZAPE0m896blx9Ct4z2GKPmIe2_9DjlrCeojgxnZ6jDlIqI0VKfow6lLCZGxOISXYWwalctJe-goBUln1gOyaxI8LS0lfV4VO3Ah6KuSLK0VQUlntY_4PHb8-y1nwb8VTRLrBSp1nhgG8CT32IBj_gdStsUO8BT8Hnt17ZygOscp0sPgBMoS5zuNxCu0UVuywA3p9lFH21sMiTjyWCUPI2J44Y1xAlqIj2PFed5nNu2sAbjlItZni_UYiG0NrFmc8qMFNRJx5RUkkvW3pzRILro_pi78fX3FkKTreqtr9qXGVcsokKYiLUqelQ5X4fgIc82vlhbv88YzQ5osxZtdkCbndC2lrujpQCAf7kRRkgjxB8d-XET</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517033971</pqid></control><display><type>article</type><title>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</title><source>IEEE Electronic Library (IEL)</source><creator>Agarwal, Aditi ; Han, Kijeong ; Baliga, B. J.</creator><creatorcontrib>Agarwal, Aditi ; Han, Kijeong ; Baliga, B. J.</creatorcontrib><description>Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3067921</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4H-silicon carbide (SiC) ; Breakdown ; cell design ; Field effect transistors ; hexagonal ; Hexagonal cells ; inversion ; junction barrier Schottky field effect transistor (JBSFET) ; Layout ; Layouts ; Leakage current ; Leakage currents ; linear ; Logic gates ; MOSFET ; octagonal ; Schottky barriers ; Schottky diodes ; Semiconductor devices ; Silicon carbide ; Transistors ; Voltage drop</subject><ispartof>IEEE transactions on electron devices, 2021-05, Vol.68 (5), p.2395-2400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</citedby><cites>FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</cites><orcidid>0000-0001-9171-0080 ; 0000-0003-4594-3398 ; 0000-0002-1006-0694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9393493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9393493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agarwal, Aditi</creatorcontrib><creatorcontrib>Han, Kijeong</creatorcontrib><creatorcontrib>Baliga, B. J.</creatorcontrib><title>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.</description><subject>4H-silicon carbide (SiC)</subject><subject>Breakdown</subject><subject>cell design</subject><subject>Field effect transistors</subject><subject>hexagonal</subject><subject>Hexagonal cells</subject><subject>inversion</subject><subject>junction barrier Schottky field effect transistor (JBSFET)</subject><subject>Layout</subject><subject>Layouts</subject><subject>Leakage current</subject><subject>Leakage currents</subject><subject>linear</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>octagonal</subject><subject>Schottky barriers</subject><subject>Schottky diodes</subject><subject>Semiconductor devices</subject><subject>Silicon carbide</subject><subject>Transistors</subject><subject>Voltage drop</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PwkAQxTdGExG9m3jZxPPifrfrTSsChgQiVY_NskxDSWlxt6D895ZAPE0m896blx9Ct4z2GKPmIe2_9DjlrCeojgxnZ6jDlIqI0VKfow6lLCZGxOISXYWwalctJe-goBUln1gOyaxI8LS0lfV4VO3Ah6KuSLK0VQUlntY_4PHb8-y1nwb8VTRLrBSp1nhgG8CT32IBj_gdStsUO8BT8Hnt17ZygOscp0sPgBMoS5zuNxCu0UVuywA3p9lFH21sMiTjyWCUPI2J44Y1xAlqIj2PFed5nNu2sAbjlItZni_UYiG0NrFmc8qMFNRJx5RUkkvW3pzRILro_pi78fX3FkKTreqtr9qXGVcsokKYiLUqelQ5X4fgIc82vlhbv88YzQ5osxZtdkCbndC2lrujpQCAf7kRRkgjxB8d-XET</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Agarwal, Aditi</creator><creator>Han, Kijeong</creator><creator>Baliga, B. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9171-0080</orcidid><orcidid>https://orcid.org/0000-0003-4594-3398</orcidid><orcidid>https://orcid.org/0000-0002-1006-0694</orcidid></search><sort><creationdate>20210501</creationdate><title>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</title><author>Agarwal, Aditi ; Han, Kijeong ; Baliga, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c30976b8522f8fa1646e9c5c81ffd5dd3669861b019430c4c154542415ddc96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4H-silicon carbide (SiC)</topic><topic>Breakdown</topic><topic>cell design</topic><topic>Field effect transistors</topic><topic>hexagonal</topic><topic>Hexagonal cells</topic><topic>inversion</topic><topic>junction barrier Schottky field effect transistor (JBSFET)</topic><topic>Layout</topic><topic>Layouts</topic><topic>Leakage current</topic><topic>Leakage currents</topic><topic>linear</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>octagonal</topic><topic>Schottky barriers</topic><topic>Schottky diodes</topic><topic>Semiconductor devices</topic><topic>Silicon carbide</topic><topic>Transistors</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Aditi</creatorcontrib><creatorcontrib>Han, Kijeong</creatorcontrib><creatorcontrib>Baliga, B. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agarwal, Aditi</au><au>Han, Kijeong</au><au>Baliga, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>2395</spage><epage>2400</epage><pages>2395-2400</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Planar 650-V 4H-silicon carbide (SiC), inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors (JBSFETs) with three types of cells are compared in this article for the first time. Devices with linear, hexagonal, and octagonal layouts were fabricated in a commercial foundry. The JBS diode was integrated within each cell type. The Schottky contact width for the JBS diode was adjusted to optimize third-quadrant ON-state voltage drop to below 2.5 V for each cell type to ensure by-passing the body diode while maintaining good blocking characteristics in the first quadrant. The hexagonal cell case was the only one whose breakdown voltage (560 V) fell below the 650-V rating. The highest breakdown voltage (710 V) was observed with the octagonal cell layout with a low leakage current of 10 nA at 600 V. The lowest specific ON-resistance was observed for the hexagonal cell design. However, its gate-drain charge was twice that of the conventional linear cell design and four times that of the octagonal cell design. The data from this work demonstrate that the best overall performance for the 650-V SiC, inversion-channel, 55-nm gate oxide junction barrier Schottky field effect transistors is achieved by using the octagonal cell design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3067921</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9171-0080</orcidid><orcidid>https://orcid.org/0000-0003-4594-3398</orcidid><orcidid>https://orcid.org/0000-0002-1006-0694</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-05, Vol.68 (5), p.2395-2400
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9393493
source IEEE Electronic Library (IEL)
subjects 4H-silicon carbide (SiC)
Breakdown
cell design
Field effect transistors
hexagonal
Hexagonal cells
inversion
junction barrier Schottky field effect transistor (JBSFET)
Layout
Layouts
Leakage current
Leakage currents
linear
Logic gates
MOSFET
octagonal
Schottky barriers
Schottky diodes
Semiconductor devices
Silicon carbide
Transistors
Voltage drop
title 650-V 4H-SiC Planar Inversion-Channel Power JBSFETs With 55-nm Gate Oxide: Relative Performance of Three Cell Types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=650-V%204H-SiC%20Planar%20Inversion-Channel%20Power%20JBSFETs%20With%2055-nm%20Gate%20Oxide:%20Relative%20Performance%20of%20Three%20Cell%20Types&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Agarwal,%20Aditi&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=2395&rft.epage=2400&rft.pages=2395-2400&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3067921&rft_dat=%3Cproquest_RIE%3E2517033971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2517033971&rft_id=info:pmid/&rft_ieee_id=9393493&rfr_iscdi=true