UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information

Semantic segmentation of aerial videos has been extensively used for decision making in monitoring environmental changes, urban planning, and disaster management. The reliability of these decision support systems is dependent on the accuracy of the video semantic segmentation algorithms. The existin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.4115-4127
Hauptverfasser: Girisha, S., Verma, Ujjwal, Manohara Pai, M. M., Pai, Radhika M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4127
container_issue
container_start_page 4115
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Girisha, S.
Verma, Ujjwal
Manohara Pai, M. M.
Pai, Radhika M.
description Semantic segmentation of aerial videos has been extensively used for decision making in monitoring environmental changes, urban planning, and disaster management. The reliability of these decision support systems is dependent on the accuracy of the video semantic segmentation algorithms. The existing CNN-based video semantic segmentation methods have enhanced the image semantic segmentation methods by incorporating an additional module such as LSTM or optical flow for computing temporal dynamics of the video which is a computational overhead. The proposed research work modifies the CNN architecture by incorporating temporal information to improve the efficiency of video semantic segmentation. In this work, an enhanced encoder-decoder based CNN architecture (UVid-Net) is proposed for unmanned aerial vehicle (UAV) video semantic segmentation. The encoder of the proposed architecture embeds temporal information for temporally consistent labeling. The decoder is enhanced by introducing the feature-refiner module, which aids in accurate localization of the class labels. The proposed UVid-Net architecture for UAV video semantic segmentation is quantitatively evaluated on extended ManipalUAVid dataset. The performance metric mean Intersection over Union of 0.79 has been observed which is significantly greater than the other state-of-the-art algorithms. Further, the proposed work produced promising results even for the pretrained model of UVid-Net on urban street scene by fine tuning the final layer on UAV aerial videos.
doi_str_mv 10.1109/JSTARS.2021.3069909
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9392319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9392319</ieee_id><doaj_id>oai_doaj_org_article_a59f74bb97f04967a5627ed4538282f5</doaj_id><sourcerecordid>2519084531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5083062f834064252987b7023b8019736691be015a515ef60e3d02e775e62bc33</originalsourceid><addsrcrecordid>eNo9kctOwzAQRS0EEuXxBWwssU4Zv-KYXYUKFCGQaMvWcpJxSdXExUkX_D2GIFYe2ffeGc8h5IrBlDEwN0_L1extOeXA2VRAbgyYIzLhTLGMKaGOyYQZYTImQZ6Ss77fAuRcGzEhdv3e1NkLDrd03n24rsKaLrF13dBUqdi02A1uaEJHg6fr2TudYWzcjiYXhp6WX3TelljXTbehK2z3IabHRedDbH9tF-TEu12Pl3_nOVnfz1d3j9nz68PibvacVVLLIVNQpLm5L4SEXHLFTaFLDVyUBTCjRZ4bViIw5RRT6HNAUQNHrRXmvKyEOCeLMbcObmv3sWld_LLBNfb3IsSNdTH9aYfWKeO1LEujPUiTa6fSLrCWShS84F6lrOsxax_D5wH7wW7DIXZpfMsVM1AkKUsqMaqqGPo-ov_vysD-ULEjFftDxf5RSa6r0dUg4r8jweEiIfoGByyFlA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519084531</pqid></control><display><type>article</type><title>UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Girisha, S. ; Verma, Ujjwal ; Manohara Pai, M. M. ; Pai, Radhika M.</creator><creatorcontrib>Girisha, S. ; Verma, Ujjwal ; Manohara Pai, M. M. ; Pai, Radhika M.</creatorcontrib><description>Semantic segmentation of aerial videos has been extensively used for decision making in monitoring environmental changes, urban planning, and disaster management. The reliability of these decision support systems is dependent on the accuracy of the video semantic segmentation algorithms. The existing CNN-based video semantic segmentation methods have enhanced the image semantic segmentation methods by incorporating an additional module such as LSTM or optical flow for computing temporal dynamics of the video which is a computational overhead. The proposed research work modifies the CNN architecture by incorporating temporal information to improve the efficiency of video semantic segmentation. In this work, an enhanced encoder-decoder based CNN architecture (UVid-Net) is proposed for unmanned aerial vehicle (UAV) video semantic segmentation. The encoder of the proposed architecture embeds temporal information for temporally consistent labeling. The decoder is enhanced by introducing the feature-refiner module, which aids in accurate localization of the class labels. The proposed UVid-Net architecture for UAV video semantic segmentation is quantitatively evaluated on extended ManipalUAVid dataset. The performance metric mean Intersection over Union of 0.79 has been observed which is significantly greater than the other state-of-the-art algorithms. Further, the proposed work produced promising results even for the pretrained model of UVid-Net on urban street scene by fine tuning the final layer on UAV aerial videos.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3069909</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Coders ; Computer applications ; Computer architecture ; Decision making ; Decision support systems ; Deep learning ; Disaster management ; Embedding ; Emergency preparedness ; Environmental changes ; Environmental management ; Environmental monitoring ; Feature extraction ; Image enhancement ; Image processing ; Image segmentation ; Labels ; Localization ; Methods ; Modules ; Optical flow (image analysis) ; Optical imaging ; Research proposals ; Semantic segmentation ; Semantics ; transfer learning ; U-Net ; unmanned aerial vehicle (UAV) video ; Unmanned aerial vehicles ; Urban planning ; Video ; Videos</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.4115-4127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5083062f834064252987b7023b8019736691be015a515ef60e3d02e775e62bc33</citedby><cites>FETCH-LOGICAL-c474t-5083062f834064252987b7023b8019736691be015a515ef60e3d02e775e62bc33</cites><orcidid>0000-0003-2164-2945 ; 0000-0003-2582-9600 ; 0000-0002-0916-0495 ; 0000-0002-6133-5379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Girisha, S.</creatorcontrib><creatorcontrib>Verma, Ujjwal</creatorcontrib><creatorcontrib>Manohara Pai, M. M.</creatorcontrib><creatorcontrib>Pai, Radhika M.</creatorcontrib><title>UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Semantic segmentation of aerial videos has been extensively used for decision making in monitoring environmental changes, urban planning, and disaster management. The reliability of these decision support systems is dependent on the accuracy of the video semantic segmentation algorithms. The existing CNN-based video semantic segmentation methods have enhanced the image semantic segmentation methods by incorporating an additional module such as LSTM or optical flow for computing temporal dynamics of the video which is a computational overhead. The proposed research work modifies the CNN architecture by incorporating temporal information to improve the efficiency of video semantic segmentation. In this work, an enhanced encoder-decoder based CNN architecture (UVid-Net) is proposed for unmanned aerial vehicle (UAV) video semantic segmentation. The encoder of the proposed architecture embeds temporal information for temporally consistent labeling. The decoder is enhanced by introducing the feature-refiner module, which aids in accurate localization of the class labels. The proposed UVid-Net architecture for UAV video semantic segmentation is quantitatively evaluated on extended ManipalUAVid dataset. The performance metric mean Intersection over Union of 0.79 has been observed which is significantly greater than the other state-of-the-art algorithms. Further, the proposed work produced promising results even for the pretrained model of UVid-Net on urban street scene by fine tuning the final layer on UAV aerial videos.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Coders</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Deep learning</subject><subject>Disaster management</subject><subject>Embedding</subject><subject>Emergency preparedness</subject><subject>Environmental changes</subject><subject>Environmental management</subject><subject>Environmental monitoring</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Localization</subject><subject>Methods</subject><subject>Modules</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Research proposals</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>transfer learning</subject><subject>U-Net</subject><subject>unmanned aerial vehicle (UAV) video</subject><subject>Unmanned aerial vehicles</subject><subject>Urban planning</subject><subject>Video</subject><subject>Videos</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kctOwzAQRS0EEuXxBWwssU4Zv-KYXYUKFCGQaMvWcpJxSdXExUkX_D2GIFYe2ffeGc8h5IrBlDEwN0_L1extOeXA2VRAbgyYIzLhTLGMKaGOyYQZYTImQZ6Ss77fAuRcGzEhdv3e1NkLDrd03n24rsKaLrF13dBUqdi02A1uaEJHg6fr2TudYWzcjiYXhp6WX3TelljXTbehK2z3IabHRedDbH9tF-TEu12Pl3_nOVnfz1d3j9nz68PibvacVVLLIVNQpLm5L4SEXHLFTaFLDVyUBTCjRZ4bViIw5RRT6HNAUQNHrRXmvKyEOCeLMbcObmv3sWld_LLBNfb3IsSNdTH9aYfWKeO1LEujPUiTa6fSLrCWShS84F6lrOsxax_D5wH7wW7DIXZpfMsVM1AkKUsqMaqqGPo-ov_vysD-ULEjFftDxf5RSa6r0dUg4r8jweEiIfoGByyFlA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Girisha, S.</creator><creator>Verma, Ujjwal</creator><creator>Manohara Pai, M. M.</creator><creator>Pai, Radhika M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2164-2945</orcidid><orcidid>https://orcid.org/0000-0003-2582-9600</orcidid><orcidid>https://orcid.org/0000-0002-0916-0495</orcidid><orcidid>https://orcid.org/0000-0002-6133-5379</orcidid></search><sort><creationdate>2021</creationdate><title>UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information</title><author>Girisha, S. ; Verma, Ujjwal ; Manohara Pai, M. M. ; Pai, Radhika M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5083062f834064252987b7023b8019736691be015a515ef60e3d02e775e62bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Coders</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Deep learning</topic><topic>Disaster management</topic><topic>Embedding</topic><topic>Emergency preparedness</topic><topic>Environmental changes</topic><topic>Environmental management</topic><topic>Environmental monitoring</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Localization</topic><topic>Methods</topic><topic>Modules</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Research proposals</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>transfer learning</topic><topic>U-Net</topic><topic>unmanned aerial vehicle (UAV) video</topic><topic>Unmanned aerial vehicles</topic><topic>Urban planning</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girisha, S.</creatorcontrib><creatorcontrib>Verma, Ujjwal</creatorcontrib><creatorcontrib>Manohara Pai, M. M.</creatorcontrib><creatorcontrib>Pai, Radhika M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girisha, S.</au><au>Verma, Ujjwal</au><au>Manohara Pai, M. M.</au><au>Pai, Radhika M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>4115</spage><epage>4127</epage><pages>4115-4127</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Semantic segmentation of aerial videos has been extensively used for decision making in monitoring environmental changes, urban planning, and disaster management. The reliability of these decision support systems is dependent on the accuracy of the video semantic segmentation algorithms. The existing CNN-based video semantic segmentation methods have enhanced the image semantic segmentation methods by incorporating an additional module such as LSTM or optical flow for computing temporal dynamics of the video which is a computational overhead. The proposed research work modifies the CNN architecture by incorporating temporal information to improve the efficiency of video semantic segmentation. In this work, an enhanced encoder-decoder based CNN architecture (UVid-Net) is proposed for unmanned aerial vehicle (UAV) video semantic segmentation. The encoder of the proposed architecture embeds temporal information for temporally consistent labeling. The decoder is enhanced by introducing the feature-refiner module, which aids in accurate localization of the class labels. The proposed UVid-Net architecture for UAV video semantic segmentation is quantitatively evaluated on extended ManipalUAVid dataset. The performance metric mean Intersection over Union of 0.79 has been observed which is significantly greater than the other state-of-the-art algorithms. Further, the proposed work produced promising results even for the pretrained model of UVid-Net on urban street scene by fine tuning the final layer on UAV aerial videos.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3069909</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2164-2945</orcidid><orcidid>https://orcid.org/0000-0003-2582-9600</orcidid><orcidid>https://orcid.org/0000-0002-0916-0495</orcidid><orcidid>https://orcid.org/0000-0002-6133-5379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.4115-4127
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_9392319
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial intelligence
Coders
Computer applications
Computer architecture
Decision making
Decision support systems
Deep learning
Disaster management
Embedding
Emergency preparedness
Environmental changes
Environmental management
Environmental monitoring
Feature extraction
Image enhancement
Image processing
Image segmentation
Labels
Localization
Methods
Modules
Optical flow (image analysis)
Optical imaging
Research proposals
Semantic segmentation
Semantics
transfer learning
U-Net
unmanned aerial vehicle (UAV) video
Unmanned aerial vehicles
Urban planning
Video
Videos
title UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UVid-Net:%20Enhanced%20Semantic%20Segmentation%20of%20UAV%20Aerial%20Videos%20by%20Embedding%20Temporal%20Information&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Girisha,%20S.&rft.date=2021&rft.volume=14&rft.spage=4115&rft.epage=4127&rft.pages=4115-4127&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3069909&rft_dat=%3Cproquest_ieee_%3E2519084531%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519084531&rft_id=info:pmid/&rft_ieee_id=9392319&rft_doaj_id=oai_doaj_org_article_a59f74bb97f04967a5627ed4538282f5&rfr_iscdi=true