High-Performance Computing-in-Memory Architecture Based on Single-Level and Multilevel Cell Differential Spin Hall MRAM
Computing-in-memory (CiM) architectures have experienced faster growth with the emergence of nanoscale magnetic tunnel junction (MTJ) spintronic devices due to their nonvolatile and CMOS compatible architectures. Recently, spin-transfer torque (STT) and spin Hall effect (SHE)-based several CiM desig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2021-09, Vol.57 (9), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 57 |
creator | Prajapati, Sanjay Nehra, Vikas Kaushik, Brajesh Kumar |
description | Computing-in-memory (CiM) architectures have experienced faster growth with the emergence of nanoscale magnetic tunnel junction (MTJ) spintronic devices due to their nonvolatile and CMOS compatible architectures. Recently, spin-transfer torque (STT) and spin Hall effect (SHE)-based several CiM designs have been published. The majority of these designs employ a single-level cell (SLC) memory array and require high write energy to perform logic computations. To mitigate these problems, we propose novel SLC and multilevel cell (MLC) differential spin Hall (DSH) magnetic random access memory (MRAM)-based CiM designs that employed MTJs with field-free switching technique using the in-plane magnetic (IPM) layer. Initially, SLC DSH-MRAM-based magnetic full adder (MFA) is proposed. Furthermore, DSH-MRAM series MLC (sMLC)-based CiM implementations of AND/OR/XOR gates and 1 bit MFA are presented in this work. This DSH-sMLC-based CiM structure exploits a reconfigurable precharge sense amplifier (RPCSA) and innovative MTJ reference mechanism to perform each of the logic operations within a single evaluation cycle and provides complementary logic outputs useful for further computations. The comparative performance analysis of the proposed CiM MFA with SHE-based and voltage-controlled SHE-sMLC-based CiM designs reveals 52% and 33% improvement in write energy, respectively. The proposed design saves 34% area compared to the SHE-based counterpart. |
doi_str_mv | 10.1109/TMAG.2021.3069372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9388709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9388709</ieee_id><sourcerecordid>2562950294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-22f233fe2392a8567dc536d5bd107ff9d11f3e9d4721ad1c35be94bb0ffc80e93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYufuTlZQjQIjUC0bKOnHjcusoLJwH170lpxWp0R-fOSAehW0ZnjFH5sE7j-YxTzmaCBlKE_AxNmPQYoWM8RxNKWUSkF3iX6KrrdmP0fEYn6GdhN1vyDs40rlJ1AThpqnbobb0htiYpVI3b49gVW9tD0Q8O8KPqQOOmxqsRKoEs4RtKrGqN06HsbfkXEyhL_GSNAQd1b1WJV62t8UKN6_QjTq_RhVFlBzenOUWfL8_rZEGWb_PXJF6SgkvRE84NF8IAF5KryA9CXfgi0H6uGQ2NkZoxI0BqL-RMaVYIPwfp5Tk1pogoSDFF98e7rWu-Buj6bNcMrh5fZtwPuPQpl95IsSNVuKbrHJisdbZSbp8xmh38Zge_2cFvdvI7du6OHQsA_7wUURRSKX4BWWp3Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562950294</pqid></control><display><type>article</type><title>High-Performance Computing-in-Memory Architecture Based on Single-Level and Multilevel Cell Differential Spin Hall MRAM</title><source>IEEE Electronic Library (IEL)</source><creator>Prajapati, Sanjay ; Nehra, Vikas ; Kaushik, Brajesh Kumar</creator><creatorcontrib>Prajapati, Sanjay ; Nehra, Vikas ; Kaushik, Brajesh Kumar</creatorcontrib><description>Computing-in-memory (CiM) architectures have experienced faster growth with the emergence of nanoscale magnetic tunnel junction (MTJ) spintronic devices due to their nonvolatile and CMOS compatible architectures. Recently, spin-transfer torque (STT) and spin Hall effect (SHE)-based several CiM designs have been published. The majority of these designs employ a single-level cell (SLC) memory array and require high write energy to perform logic computations. To mitigate these problems, we propose novel SLC and multilevel cell (MLC) differential spin Hall (DSH) magnetic random access memory (MRAM)-based CiM designs that employed MTJs with field-free switching technique using the in-plane magnetic (IPM) layer. Initially, SLC DSH-MRAM-based magnetic full adder (MFA) is proposed. Furthermore, DSH-MRAM series MLC (sMLC)-based CiM implementations of AND/OR/XOR gates and 1 bit MFA are presented in this work. This DSH-sMLC-based CiM structure exploits a reconfigurable precharge sense amplifier (RPCSA) and innovative MTJ reference mechanism to perform each of the logic operations within a single evaluation cycle and provides complementary logic outputs useful for further computations. The comparative performance analysis of the proposed CiM MFA with SHE-based and voltage-controlled SHE-sMLC-based CiM designs reveals 52% and 33% improvement in write energy, respectively. The proposed design saves 34% area compared to the SHE-based counterpart.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3069372</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; CMOS ; Computation ; Computer architecture ; Computing-in-memory (CiM) ; differential spin Hall effect-based magnetic random access memory (DSH-MRAM) ; Gates (circuits) ; Hall effect ; hybrid CMOS/magnetic tunnel junction (MTJ) circuit ; Logic ; Logic arrays ; magnetic full adder (MFA) ; Magnetic tunneling ; Magnetism ; Magnetization ; Microprocessors ; Random access memory ; Sense amplifiers ; Switches ; Tunnel junctions</subject><ispartof>IEEE transactions on magnetics, 2021-09, Vol.57 (9), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-22f233fe2392a8567dc536d5bd107ff9d11f3e9d4721ad1c35be94bb0ffc80e93</citedby><cites>FETCH-LOGICAL-c293t-22f233fe2392a8567dc536d5bd107ff9d11f3e9d4721ad1c35be94bb0ffc80e93</cites><orcidid>0000-0001-7016-1350 ; 0000-0002-6414-0032 ; 0000-0003-0407-9046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9388709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9388709$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prajapati, Sanjay</creatorcontrib><creatorcontrib>Nehra, Vikas</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><title>High-Performance Computing-in-Memory Architecture Based on Single-Level and Multilevel Cell Differential Spin Hall MRAM</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Computing-in-memory (CiM) architectures have experienced faster growth with the emergence of nanoscale magnetic tunnel junction (MTJ) spintronic devices due to their nonvolatile and CMOS compatible architectures. Recently, spin-transfer torque (STT) and spin Hall effect (SHE)-based several CiM designs have been published. The majority of these designs employ a single-level cell (SLC) memory array and require high write energy to perform logic computations. To mitigate these problems, we propose novel SLC and multilevel cell (MLC) differential spin Hall (DSH) magnetic random access memory (MRAM)-based CiM designs that employed MTJs with field-free switching technique using the in-plane magnetic (IPM) layer. Initially, SLC DSH-MRAM-based magnetic full adder (MFA) is proposed. Furthermore, DSH-MRAM series MLC (sMLC)-based CiM implementations of AND/OR/XOR gates and 1 bit MFA are presented in this work. This DSH-sMLC-based CiM structure exploits a reconfigurable precharge sense amplifier (RPCSA) and innovative MTJ reference mechanism to perform each of the logic operations within a single evaluation cycle and provides complementary logic outputs useful for further computations. The comparative performance analysis of the proposed CiM MFA with SHE-based and voltage-controlled SHE-sMLC-based CiM designs reveals 52% and 33% improvement in write energy, respectively. The proposed design saves 34% area compared to the SHE-based counterpart.</description><subject>Arrays</subject><subject>CMOS</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Computing-in-memory (CiM)</subject><subject>differential spin Hall effect-based magnetic random access memory (DSH-MRAM)</subject><subject>Gates (circuits)</subject><subject>Hall effect</subject><subject>hybrid CMOS/magnetic tunnel junction (MTJ) circuit</subject><subject>Logic</subject><subject>Logic arrays</subject><subject>magnetic full adder (MFA)</subject><subject>Magnetic tunneling</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Microprocessors</subject><subject>Random access memory</subject><subject>Sense amplifiers</subject><subject>Switches</subject><subject>Tunnel junctions</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYufuTlZQjQIjUC0bKOnHjcusoLJwH170lpxWp0R-fOSAehW0ZnjFH5sE7j-YxTzmaCBlKE_AxNmPQYoWM8RxNKWUSkF3iX6KrrdmP0fEYn6GdhN1vyDs40rlJ1AThpqnbobb0htiYpVI3b49gVW9tD0Q8O8KPqQOOmxqsRKoEs4RtKrGqN06HsbfkXEyhL_GSNAQd1b1WJV62t8UKN6_QjTq_RhVFlBzenOUWfL8_rZEGWb_PXJF6SgkvRE84NF8IAF5KryA9CXfgi0H6uGQ2NkZoxI0BqL-RMaVYIPwfp5Tk1pogoSDFF98e7rWu-Buj6bNcMrh5fZtwPuPQpl95IsSNVuKbrHJisdbZSbp8xmh38Zge_2cFvdvI7du6OHQsA_7wUURRSKX4BWWp3Fw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Prajapati, Sanjay</creator><creator>Nehra, Vikas</creator><creator>Kaushik, Brajesh Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7016-1350</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0003-0407-9046</orcidid></search><sort><creationdate>20210901</creationdate><title>High-Performance Computing-in-Memory Architecture Based on Single-Level and Multilevel Cell Differential Spin Hall MRAM</title><author>Prajapati, Sanjay ; Nehra, Vikas ; Kaushik, Brajesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-22f233fe2392a8567dc536d5bd107ff9d11f3e9d4721ad1c35be94bb0ffc80e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>CMOS</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Computing-in-memory (CiM)</topic><topic>differential spin Hall effect-based magnetic random access memory (DSH-MRAM)</topic><topic>Gates (circuits)</topic><topic>Hall effect</topic><topic>hybrid CMOS/magnetic tunnel junction (MTJ) circuit</topic><topic>Logic</topic><topic>Logic arrays</topic><topic>magnetic full adder (MFA)</topic><topic>Magnetic tunneling</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Microprocessors</topic><topic>Random access memory</topic><topic>Sense amplifiers</topic><topic>Switches</topic><topic>Tunnel junctions</topic><toplevel>online_resources</toplevel><creatorcontrib>Prajapati, Sanjay</creatorcontrib><creatorcontrib>Nehra, Vikas</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prajapati, Sanjay</au><au>Nehra, Vikas</au><au>Kaushik, Brajesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Computing-in-Memory Architecture Based on Single-Level and Multilevel Cell Differential Spin Hall MRAM</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>57</volume><issue>9</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Computing-in-memory (CiM) architectures have experienced faster growth with the emergence of nanoscale magnetic tunnel junction (MTJ) spintronic devices due to their nonvolatile and CMOS compatible architectures. Recently, spin-transfer torque (STT) and spin Hall effect (SHE)-based several CiM designs have been published. The majority of these designs employ a single-level cell (SLC) memory array and require high write energy to perform logic computations. To mitigate these problems, we propose novel SLC and multilevel cell (MLC) differential spin Hall (DSH) magnetic random access memory (MRAM)-based CiM designs that employed MTJs with field-free switching technique using the in-plane magnetic (IPM) layer. Initially, SLC DSH-MRAM-based magnetic full adder (MFA) is proposed. Furthermore, DSH-MRAM series MLC (sMLC)-based CiM implementations of AND/OR/XOR gates and 1 bit MFA are presented in this work. This DSH-sMLC-based CiM structure exploits a reconfigurable precharge sense amplifier (RPCSA) and innovative MTJ reference mechanism to perform each of the logic operations within a single evaluation cycle and provides complementary logic outputs useful for further computations. The comparative performance analysis of the proposed CiM MFA with SHE-based and voltage-controlled SHE-sMLC-based CiM designs reveals 52% and 33% improvement in write energy, respectively. The proposed design saves 34% area compared to the SHE-based counterpart.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2021.3069372</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7016-1350</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0003-0407-9046</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2021-09, Vol.57 (9), p.1-15 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_9388709 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays CMOS Computation Computer architecture Computing-in-memory (CiM) differential spin Hall effect-based magnetic random access memory (DSH-MRAM) Gates (circuits) Hall effect hybrid CMOS/magnetic tunnel junction (MTJ) circuit Logic Logic arrays magnetic full adder (MFA) Magnetic tunneling Magnetism Magnetization Microprocessors Random access memory Sense amplifiers Switches Tunnel junctions |
title | High-Performance Computing-in-Memory Architecture Based on Single-Level and Multilevel Cell Differential Spin Hall MRAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Computing-in-Memory%20Architecture%20Based%20on%20Single-Level%20and%20Multilevel%20Cell%20Differential%20Spin%20Hall%20MRAM&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Prajapati,%20Sanjay&rft.date=2021-09-01&rft.volume=57&rft.issue=9&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3069372&rft_dat=%3Cproquest_RIE%3E2562950294%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562950294&rft_id=info:pmid/&rft_ieee_id=9388709&rfr_iscdi=true |