WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices
Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2021-09, Vol.8 (18), p.13900-13913 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13913 |
---|---|
container_issue | 18 |
container_start_page | 13900 |
container_title | IEEE internet of things journal |
container_volume | 8 |
creator | Yu, Bohan Wang, Yuxiang Niu, Kai Zeng, Youwei Gu, Tao Wang, Leye Guan, Cuntai Zhang, Daqing |
description | Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices. |
doi_str_mv | 10.1109/JIOT.2021.3068798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9386235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9386235</ieee_id><sourcerecordid>2570191180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AMbLJp48LLadbv94koAIBsMBDMem7HaxBChuFxK-vbsuIV7mTV5-bzJ5CN0T3CUEq-eP8XTepZiSLmAuhZJXqEWBiphxTq__7beoE8IaY1zFEqJ4C70u3NDFs421-5foT6JZaVY2-vQ7V_rC7VbRV6hn32-3PnPlKVq4eOiigT261IY7dJObTbCds7bRfPg274_iyfR93O9N4hQELmOuZGYAJFuCsUIIRUwGTEiSQyKW0oBlQCQxOctyQ5VglamSJMshZZwZaKOn5uy32eh94bamOGlvnB71Jrr2MAAHUPJIKvaxYfeF_znYUOq1PxS76jtNE4GJIkTiiiINlRY-hMLml7ME67pWXdeq61r1udYq89BknLX2wiuQnEICv-ybb_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570191180</pqid></control><display><type>article</type><title>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Bohan ; Wang, Yuxiang ; Niu, Kai ; Zeng, Youwei ; Gu, Tao ; Wang, Leye ; Guan, Cuntai ; Zhang, Daqing</creator><creatorcontrib>Yu, Bohan ; Wang, Yuxiang ; Niu, Kai ; Zeng, Youwei ; Gu, Tao ; Wang, Leye ; Guan, Cuntai ; Zhang, Daqing</creatorcontrib><description>Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.</description><identifier>ISSN: 2327-4662</identifier><identifier>ISSN: 2372-2541</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3068798</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical monitoring ; Channel state information (CSI) ; Commodities ; Computer Science ; Feature extraction ; Heart rate ; Monitoring ; Radar equipment ; Respiration ; Sensors ; Signal processing ; Sleep ; sleep monitoring ; State (computer science) ; Wi-Fi ; Wireless access points ; Wireless fidelity</subject><ispartof>IEEE internet of things journal, 2021-09, Vol.8 (18), p.13900-13913</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</citedby><cites>FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</cites><orcidid>0000-0002-1350-6639 ; 0000-0002-5518-6557 ; 0000-0002-2034-7752 ; 0000-0002-7627-8485 ; 0000-0002-6608-1267 ; 0000-0003-3369-6393 ; 0000-0002-0872-3276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9386235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9386235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03363398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bohan</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Niu, Kai</creatorcontrib><creatorcontrib>Zeng, Youwei</creatorcontrib><creatorcontrib>Gu, Tao</creatorcontrib><creatorcontrib>Wang, Leye</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><title>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.</description><subject>Biomedical monitoring</subject><subject>Channel state information (CSI)</subject><subject>Commodities</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Heart rate</subject><subject>Monitoring</subject><subject>Radar equipment</subject><subject>Respiration</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Sleep</subject><subject>sleep monitoring</subject><subject>State (computer science)</subject><subject>Wi-Fi</subject><subject>Wireless access points</subject><subject>Wireless fidelity</subject><issn>2327-4662</issn><issn>2372-2541</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5AMbLJp48LLadbv94koAIBsMBDMem7HaxBChuFxK-vbsuIV7mTV5-bzJ5CN0T3CUEq-eP8XTepZiSLmAuhZJXqEWBiphxTq__7beoE8IaY1zFEqJ4C70u3NDFs421-5foT6JZaVY2-vQ7V_rC7VbRV6hn32-3PnPlKVq4eOiigT261IY7dJObTbCds7bRfPg274_iyfR93O9N4hQELmOuZGYAJFuCsUIIRUwGTEiSQyKW0oBlQCQxOctyQ5VglamSJMshZZwZaKOn5uy32eh94bamOGlvnB71Jrr2MAAHUPJIKvaxYfeF_znYUOq1PxS76jtNE4GJIkTiiiINlRY-hMLml7ME67pWXdeq61r1udYq89BknLX2wiuQnEICv-ybb_s</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Yu, Bohan</creator><creator>Wang, Yuxiang</creator><creator>Niu, Kai</creator><creator>Zeng, Youwei</creator><creator>Gu, Tao</creator><creator>Wang, Leye</creator><creator>Guan, Cuntai</creator><creator>Zhang, Daqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1350-6639</orcidid><orcidid>https://orcid.org/0000-0002-5518-6557</orcidid><orcidid>https://orcid.org/0000-0002-2034-7752</orcidid><orcidid>https://orcid.org/0000-0002-7627-8485</orcidid><orcidid>https://orcid.org/0000-0002-6608-1267</orcidid><orcidid>https://orcid.org/0000-0003-3369-6393</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid></search><sort><creationdate>20210915</creationdate><title>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</title><author>Yu, Bohan ; Wang, Yuxiang ; Niu, Kai ; Zeng, Youwei ; Gu, Tao ; Wang, Leye ; Guan, Cuntai ; Zhang, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical monitoring</topic><topic>Channel state information (CSI)</topic><topic>Commodities</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Heart rate</topic><topic>Monitoring</topic><topic>Radar equipment</topic><topic>Respiration</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Sleep</topic><topic>sleep monitoring</topic><topic>State (computer science)</topic><topic>Wi-Fi</topic><topic>Wireless access points</topic><topic>Wireless fidelity</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bohan</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Niu, Kai</creatorcontrib><creatorcontrib>Zeng, Youwei</creatorcontrib><creatorcontrib>Gu, Tao</creatorcontrib><creatorcontrib>Wang, Leye</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Bohan</au><au>Wang, Yuxiang</au><au>Niu, Kai</au><au>Zeng, Youwei</au><au>Gu, Tao</au><au>Wang, Leye</au><au>Guan, Cuntai</au><au>Zhang, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>8</volume><issue>18</issue><spage>13900</spage><epage>13913</epage><pages>13900-13913</pages><issn>2327-4662</issn><issn>2372-2541</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3068798</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1350-6639</orcidid><orcidid>https://orcid.org/0000-0002-5518-6557</orcidid><orcidid>https://orcid.org/0000-0002-2034-7752</orcidid><orcidid>https://orcid.org/0000-0002-7627-8485</orcidid><orcidid>https://orcid.org/0000-0002-6608-1267</orcidid><orcidid>https://orcid.org/0000-0003-3369-6393</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2021-09, Vol.8 (18), p.13900-13913 |
issn | 2327-4662 2372-2541 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9386235 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical monitoring Channel state information (CSI) Commodities Computer Science Feature extraction Heart rate Monitoring Radar equipment Respiration Sensors Signal processing Sleep sleep monitoring State (computer science) Wi-Fi Wireless access points Wireless fidelity |
title | WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WiFi-Sleep:%20Sleep%20Stage%20Monitoring%20Using%20Commodity%20Wi-Fi%20Devices&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yu,%20Bohan&rft.date=2021-09-15&rft.volume=8&rft.issue=18&rft.spage=13900&rft.epage=13913&rft.pages=13900-13913&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3068798&rft_dat=%3Cproquest_RIE%3E2570191180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570191180&rft_id=info:pmid/&rft_ieee_id=9386235&rfr_iscdi=true |