WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices

Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2021-09, Vol.8 (18), p.13900-13913
Hauptverfasser: Yu, Bohan, Wang, Yuxiang, Niu, Kai, Zeng, Youwei, Gu, Tao, Wang, Leye, Guan, Cuntai, Zhang, Daqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13913
container_issue 18
container_start_page 13900
container_title IEEE internet of things journal
container_volume 8
creator Yu, Bohan
Wang, Yuxiang
Niu, Kai
Zeng, Youwei
Gu, Tao
Wang, Leye
Guan, Cuntai
Zhang, Daqing
description Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.
doi_str_mv 10.1109/JIOT.2021.3068798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9386235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9386235</ieee_id><sourcerecordid>2570191180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AMbLJp48LLadbv94koAIBsMBDMem7HaxBChuFxK-vbsuIV7mTV5-bzJ5CN0T3CUEq-eP8XTepZiSLmAuhZJXqEWBiphxTq__7beoE8IaY1zFEqJ4C70u3NDFs421-5foT6JZaVY2-vQ7V_rC7VbRV6hn32-3PnPlKVq4eOiigT261IY7dJObTbCds7bRfPg274_iyfR93O9N4hQELmOuZGYAJFuCsUIIRUwGTEiSQyKW0oBlQCQxOctyQ5VglamSJMshZZwZaKOn5uy32eh94bamOGlvnB71Jrr2MAAHUPJIKvaxYfeF_znYUOq1PxS76jtNE4GJIkTiiiINlRY-hMLml7ME67pWXdeq61r1udYq89BknLX2wiuQnEICv-ybb_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570191180</pqid></control><display><type>article</type><title>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Bohan ; Wang, Yuxiang ; Niu, Kai ; Zeng, Youwei ; Gu, Tao ; Wang, Leye ; Guan, Cuntai ; Zhang, Daqing</creator><creatorcontrib>Yu, Bohan ; Wang, Yuxiang ; Niu, Kai ; Zeng, Youwei ; Gu, Tao ; Wang, Leye ; Guan, Cuntai ; Zhang, Daqing</creatorcontrib><description>Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.</description><identifier>ISSN: 2327-4662</identifier><identifier>ISSN: 2372-2541</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2021.3068798</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical monitoring ; Channel state information (CSI) ; Commodities ; Computer Science ; Feature extraction ; Heart rate ; Monitoring ; Radar equipment ; Respiration ; Sensors ; Signal processing ; Sleep ; sleep monitoring ; State (computer science) ; Wi-Fi ; Wireless access points ; Wireless fidelity</subject><ispartof>IEEE internet of things journal, 2021-09, Vol.8 (18), p.13900-13913</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</citedby><cites>FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</cites><orcidid>0000-0002-1350-6639 ; 0000-0002-5518-6557 ; 0000-0002-2034-7752 ; 0000-0002-7627-8485 ; 0000-0002-6608-1267 ; 0000-0003-3369-6393 ; 0000-0002-0872-3276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9386235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9386235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03363398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bohan</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Niu, Kai</creatorcontrib><creatorcontrib>Zeng, Youwei</creatorcontrib><creatorcontrib>Gu, Tao</creatorcontrib><creatorcontrib>Wang, Leye</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><title>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.</description><subject>Biomedical monitoring</subject><subject>Channel state information (CSI)</subject><subject>Commodities</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Heart rate</subject><subject>Monitoring</subject><subject>Radar equipment</subject><subject>Respiration</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Sleep</subject><subject>sleep monitoring</subject><subject>State (computer science)</subject><subject>Wi-Fi</subject><subject>Wireless access points</subject><subject>Wireless fidelity</subject><issn>2327-4662</issn><issn>2372-2541</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5AMbLJp48LLadbv94koAIBsMBDMem7HaxBChuFxK-vbsuIV7mTV5-bzJ5CN0T3CUEq-eP8XTepZiSLmAuhZJXqEWBiphxTq__7beoE8IaY1zFEqJ4C70u3NDFs421-5foT6JZaVY2-vQ7V_rC7VbRV6hn32-3PnPlKVq4eOiigT261IY7dJObTbCds7bRfPg274_iyfR93O9N4hQELmOuZGYAJFuCsUIIRUwGTEiSQyKW0oBlQCQxOctyQ5VglamSJMshZZwZaKOn5uy32eh94bamOGlvnB71Jrr2MAAHUPJIKvaxYfeF_znYUOq1PxS76jtNE4GJIkTiiiINlRY-hMLml7ME67pWXdeq61r1udYq89BknLX2wiuQnEICv-ybb_s</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Yu, Bohan</creator><creator>Wang, Yuxiang</creator><creator>Niu, Kai</creator><creator>Zeng, Youwei</creator><creator>Gu, Tao</creator><creator>Wang, Leye</creator><creator>Guan, Cuntai</creator><creator>Zhang, Daqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1350-6639</orcidid><orcidid>https://orcid.org/0000-0002-5518-6557</orcidid><orcidid>https://orcid.org/0000-0002-2034-7752</orcidid><orcidid>https://orcid.org/0000-0002-7627-8485</orcidid><orcidid>https://orcid.org/0000-0002-6608-1267</orcidid><orcidid>https://orcid.org/0000-0003-3369-6393</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid></search><sort><creationdate>20210915</creationdate><title>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</title><author>Yu, Bohan ; Wang, Yuxiang ; Niu, Kai ; Zeng, Youwei ; Gu, Tao ; Wang, Leye ; Guan, Cuntai ; Zhang, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-698da3384b3ae77791ad34781f357b8a3e43181af4dfa29747b8955df3c464a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical monitoring</topic><topic>Channel state information (CSI)</topic><topic>Commodities</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Heart rate</topic><topic>Monitoring</topic><topic>Radar equipment</topic><topic>Respiration</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Sleep</topic><topic>sleep monitoring</topic><topic>State (computer science)</topic><topic>Wi-Fi</topic><topic>Wireless access points</topic><topic>Wireless fidelity</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bohan</creatorcontrib><creatorcontrib>Wang, Yuxiang</creatorcontrib><creatorcontrib>Niu, Kai</creatorcontrib><creatorcontrib>Zeng, Youwei</creatorcontrib><creatorcontrib>Gu, Tao</creatorcontrib><creatorcontrib>Wang, Leye</creatorcontrib><creatorcontrib>Guan, Cuntai</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Bohan</au><au>Wang, Yuxiang</au><au>Niu, Kai</au><au>Zeng, Youwei</au><au>Gu, Tao</au><au>Wang, Leye</au><au>Guan, Cuntai</au><au>Zhang, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>8</volume><issue>18</issue><spage>13900</spage><epage>13913</epage><pages>13900-13913</pages><issn>2327-4662</issn><issn>2372-2541</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Sleep monitoring is essential to people's health and wellbeing, which can also assist in the diagnosis and treatment of sleep disorder. Compared with contact-based solutions, contactless sleep monitoring does not attach any device to the human body; hence, it has attracted increasing attention in recent years. Inspired by the recent advances in Wi-Fi-based sensing, this article proposes a low-cost and nonintrusive sleep monitoring system using commodity Wi-Fi devices, namely, WiFi-Sleep. We leverage the fine-grained channel state information from multiple antennas and propose advanced fusion and signal processing methods to extract accurate respiration and body movement information. We introduce a deep learning method combined with clinical sleep medicine prior knowledge to achieve four-stage sleep monitoring with limited data sources (i.e., only respiration and body movement information). We benchmark the performance of WiFi-Sleep with polysomnography, the gold reference standard. Results show that WiFi-Sleep achieves an accuracy of 81.8%, which is comparable to the state-of-the-art sleep stage monitoring using expensive radar devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2021.3068798</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1350-6639</orcidid><orcidid>https://orcid.org/0000-0002-5518-6557</orcidid><orcidid>https://orcid.org/0000-0002-2034-7752</orcidid><orcidid>https://orcid.org/0000-0002-7627-8485</orcidid><orcidid>https://orcid.org/0000-0002-6608-1267</orcidid><orcidid>https://orcid.org/0000-0003-3369-6393</orcidid><orcidid>https://orcid.org/0000-0002-0872-3276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2021-09, Vol.8 (18), p.13900-13913
issn 2327-4662
2372-2541
2327-4662
language eng
recordid cdi_ieee_primary_9386235
source IEEE Electronic Library (IEL)
subjects Biomedical monitoring
Channel state information (CSI)
Commodities
Computer Science
Feature extraction
Heart rate
Monitoring
Radar equipment
Respiration
Sensors
Signal processing
Sleep
sleep monitoring
State (computer science)
Wi-Fi
Wireless access points
Wireless fidelity
title WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WiFi-Sleep:%20Sleep%20Stage%20Monitoring%20Using%20Commodity%20Wi-Fi%20Devices&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yu,%20Bohan&rft.date=2021-09-15&rft.volume=8&rft.issue=18&rft.spage=13900&rft.epage=13913&rft.pages=13900-13913&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2021.3068798&rft_dat=%3Cproquest_RIE%3E2570191180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570191180&rft_id=info:pmid/&rft_ieee_id=9386235&rfr_iscdi=true