Fast Cross-Modal Hashing With Global and Local Similarity Embedding

Recently, supervised cross-modal hashing has attracted much attention and achieved promising performance. To learn hash functions and binary codes, most methods globally exploit the supervised information, for example, preserving an at-least-one pairwise similarity into hash codes or reconstructing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-10, Vol.52 (10), p.10064-10077
Hauptverfasser: Wang, Yongxin, Chen, Zhen-Duo, Luo, Xin, Li, Rui, Xu, Xin-Shun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10077
container_issue 10
container_start_page 10064
container_title IEEE transactions on cybernetics
container_volume 52
creator Wang, Yongxin
Chen, Zhen-Duo
Luo, Xin
Li, Rui
Xu, Xin-Shun
description Recently, supervised cross-modal hashing has attracted much attention and achieved promising performance. To learn hash functions and binary codes, most methods globally exploit the supervised information, for example, preserving an at-least-one pairwise similarity into hash codes or reconstructing the label matrix with binary codes. However, due to the hardness of the discrete optimization problem, they are usually time consuming on large-scale datasets. In addition, they neglect the class correlation in supervised information. From another point of view, they only explore the global similarity of data but overlook the local similarity hidden in the data distribution. To address these issues, we present an efficient supervised cross-modal hashing method, that is, fast cross-modal hashing (FCMH). It leverages not only global similarity information but also the local similarity in a group. Specifically, training samples are partitioned into groups; thereafter, the local similarity in each group is extracted. Moreover, the class correlation in labels is also exploited and embedded into the learning of binary codes. In addition, to solve the discrete optimization problem, we further propose an efficient discrete optimization algorithm with a well-designed group updating scheme, making its computational complexity linear to the size of the training set. In light of this, it is more efficient and scalable to large-scale datasets. Extensive experiments on three benchmark datasets demonstrate that FCMH outperforms some state-of-the-art cross-modal hashing approaches in terms of both retrieval accuracy and learning efficiency.
doi_str_mv 10.1109/TCYB.2021.3059886
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9382960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382960</ieee_id><sourcerecordid>2504352842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f968f075a4f2eeae3d6b6046bd5715fc7361e745be3b5be0f4a3877e5135bed03</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgC0Eoqj0ByAkFImFJcVvOyNEfSAVMVCEmCwndqirPEqcDP33OGrpgAf7fP7udP4AuEFwihBMHtfp1_MUQ4ymBLJESn4GrjDiMsZYsPNTzMUITLzfwrBkSCXyEowIEQwKTK5AOte-i9K28T5-bYwuo6X2G1d_R5-u20SLsslCTtcmWjV5iN5d5Urdum4fzarMGhPQa3BR6NLbyfEcg4_5bJ0u49Xb4iV9WsU5oUkXFwmXBRRM0wJbqy0xPOOQ8swwgViRC8KRFZRllmRhgwXVRAphGSLhaiAZg4dD313b_PTWd6pyPrdlqWvb9F5hBilhWFIc0Pt_6Lbp2zpMp7BAnFBBIQoUOlD58P_WFmrXukq3e4WgGiSrQbIaJKuj5FBzd-zcZ5U1p4o_pQG4PQDOWnt6TojECYfkFxSoffs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716347401</pqid></control><display><type>article</type><title>Fast Cross-Modal Hashing With Global and Local Similarity Embedding</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yongxin ; Chen, Zhen-Duo ; Luo, Xin ; Li, Rui ; Xu, Xin-Shun</creator><creatorcontrib>Wang, Yongxin ; Chen, Zhen-Duo ; Luo, Xin ; Li, Rui ; Xu, Xin-Shun</creatorcontrib><description>Recently, supervised cross-modal hashing has attracted much attention and achieved promising performance. To learn hash functions and binary codes, most methods globally exploit the supervised information, for example, preserving an at-least-one pairwise similarity into hash codes or reconstructing the label matrix with binary codes. However, due to the hardness of the discrete optimization problem, they are usually time consuming on large-scale datasets. In addition, they neglect the class correlation in supervised information. From another point of view, they only explore the global similarity of data but overlook the local similarity hidden in the data distribution. To address these issues, we present an efficient supervised cross-modal hashing method, that is, fast cross-modal hashing (FCMH). It leverages not only global similarity information but also the local similarity in a group. Specifically, training samples are partitioned into groups; thereafter, the local similarity in each group is extracted. Moreover, the class correlation in labels is also exploited and embedded into the learning of binary codes. In addition, to solve the discrete optimization problem, we further propose an efficient discrete optimization algorithm with a well-designed group updating scheme, making its computational complexity linear to the size of the training set. In light of this, it is more efficient and scalable to large-scale datasets. Extensive experiments on three benchmark datasets demonstrate that FCMH outperforms some state-of-the-art cross-modal hashing approaches in terms of both retrieval accuracy and learning efficiency.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3059886</identifier><identifier>PMID: 33750723</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Binary codes ; Correlation ; Cross-modal hashing ; Datasets ; discrete optimization ; Embedding ; Hash based algorithms ; Hash functions ; Learning ; local similarity embedding ; Optimization ; scalable hashing ; Semantics ; Similarity ; Symmetric matrices ; Training</subject><ispartof>IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.10064-10077</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f968f075a4f2eeae3d6b6046bd5715fc7361e745be3b5be0f4a3877e5135bed03</citedby><cites>FETCH-LOGICAL-c349t-f968f075a4f2eeae3d6b6046bd5715fc7361e745be3b5be0f4a3877e5135bed03</cites><orcidid>0000-0001-9972-7370 ; 0000-0002-0172-9085 ; 0000-0002-3481-4892 ; 0000-0002-6901-5476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9382960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33750723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yongxin</creatorcontrib><creatorcontrib>Chen, Zhen-Duo</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Xu, Xin-Shun</creatorcontrib><title>Fast Cross-Modal Hashing With Global and Local Similarity Embedding</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Recently, supervised cross-modal hashing has attracted much attention and achieved promising performance. To learn hash functions and binary codes, most methods globally exploit the supervised information, for example, preserving an at-least-one pairwise similarity into hash codes or reconstructing the label matrix with binary codes. However, due to the hardness of the discrete optimization problem, they are usually time consuming on large-scale datasets. In addition, they neglect the class correlation in supervised information. From another point of view, they only explore the global similarity of data but overlook the local similarity hidden in the data distribution. To address these issues, we present an efficient supervised cross-modal hashing method, that is, fast cross-modal hashing (FCMH). It leverages not only global similarity information but also the local similarity in a group. Specifically, training samples are partitioned into groups; thereafter, the local similarity in each group is extracted. Moreover, the class correlation in labels is also exploited and embedded into the learning of binary codes. In addition, to solve the discrete optimization problem, we further propose an efficient discrete optimization algorithm with a well-designed group updating scheme, making its computational complexity linear to the size of the training set. In light of this, it is more efficient and scalable to large-scale datasets. Extensive experiments on three benchmark datasets demonstrate that FCMH outperforms some state-of-the-art cross-modal hashing approaches in terms of both retrieval accuracy and learning efficiency.</description><subject>Binary codes</subject><subject>Correlation</subject><subject>Cross-modal hashing</subject><subject>Datasets</subject><subject>discrete optimization</subject><subject>Embedding</subject><subject>Hash based algorithms</subject><subject>Hash functions</subject><subject>Learning</subject><subject>local similarity embedding</subject><subject>Optimization</subject><subject>scalable hashing</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Symmetric matrices</subject><subject>Training</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDtPwzAQgC0Eoqj0ByAkFImFJcVvOyNEfSAVMVCEmCwndqirPEqcDP33OGrpgAf7fP7udP4AuEFwihBMHtfp1_MUQ4ymBLJESn4GrjDiMsZYsPNTzMUITLzfwrBkSCXyEowIEQwKTK5AOte-i9K28T5-bYwuo6X2G1d_R5-u20SLsslCTtcmWjV5iN5d5Urdum4fzarMGhPQa3BR6NLbyfEcg4_5bJ0u49Xb4iV9WsU5oUkXFwmXBRRM0wJbqy0xPOOQ8swwgViRC8KRFZRllmRhgwXVRAphGSLhaiAZg4dD313b_PTWd6pyPrdlqWvb9F5hBilhWFIc0Pt_6Lbp2zpMp7BAnFBBIQoUOlD58P_WFmrXukq3e4WgGiSrQbIaJKuj5FBzd-zcZ5U1p4o_pQG4PQDOWnt6TojECYfkFxSoffs</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Yongxin</creator><creator>Chen, Zhen-Duo</creator><creator>Luo, Xin</creator><creator>Li, Rui</creator><creator>Xu, Xin-Shun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9972-7370</orcidid><orcidid>https://orcid.org/0000-0002-0172-9085</orcidid><orcidid>https://orcid.org/0000-0002-3481-4892</orcidid><orcidid>https://orcid.org/0000-0002-6901-5476</orcidid></search><sort><creationdate>20221001</creationdate><title>Fast Cross-Modal Hashing With Global and Local Similarity Embedding</title><author>Wang, Yongxin ; Chen, Zhen-Duo ; Luo, Xin ; Li, Rui ; Xu, Xin-Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f968f075a4f2eeae3d6b6046bd5715fc7361e745be3b5be0f4a3877e5135bed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binary codes</topic><topic>Correlation</topic><topic>Cross-modal hashing</topic><topic>Datasets</topic><topic>discrete optimization</topic><topic>Embedding</topic><topic>Hash based algorithms</topic><topic>Hash functions</topic><topic>Learning</topic><topic>local similarity embedding</topic><topic>Optimization</topic><topic>scalable hashing</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Symmetric matrices</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yongxin</creatorcontrib><creatorcontrib>Chen, Zhen-Duo</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Xu, Xin-Shun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yongxin</au><au>Chen, Zhen-Duo</au><au>Luo, Xin</au><au>Li, Rui</au><au>Xu, Xin-Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Cross-Modal Hashing With Global and Local Similarity Embedding</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>10</issue><spage>10064</spage><epage>10077</epage><pages>10064-10077</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Recently, supervised cross-modal hashing has attracted much attention and achieved promising performance. To learn hash functions and binary codes, most methods globally exploit the supervised information, for example, preserving an at-least-one pairwise similarity into hash codes or reconstructing the label matrix with binary codes. However, due to the hardness of the discrete optimization problem, they are usually time consuming on large-scale datasets. In addition, they neglect the class correlation in supervised information. From another point of view, they only explore the global similarity of data but overlook the local similarity hidden in the data distribution. To address these issues, we present an efficient supervised cross-modal hashing method, that is, fast cross-modal hashing (FCMH). It leverages not only global similarity information but also the local similarity in a group. Specifically, training samples are partitioned into groups; thereafter, the local similarity in each group is extracted. Moreover, the class correlation in labels is also exploited and embedded into the learning of binary codes. In addition, to solve the discrete optimization problem, we further propose an efficient discrete optimization algorithm with a well-designed group updating scheme, making its computational complexity linear to the size of the training set. In light of this, it is more efficient and scalable to large-scale datasets. Extensive experiments on three benchmark datasets demonstrate that FCMH outperforms some state-of-the-art cross-modal hashing approaches in terms of both retrieval accuracy and learning efficiency.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33750723</pmid><doi>10.1109/TCYB.2021.3059886</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9972-7370</orcidid><orcidid>https://orcid.org/0000-0002-0172-9085</orcidid><orcidid>https://orcid.org/0000-0002-3481-4892</orcidid><orcidid>https://orcid.org/0000-0002-6901-5476</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.10064-10077
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_9382960
source IEEE Electronic Library (IEL)
subjects Binary codes
Correlation
Cross-modal hashing
Datasets
discrete optimization
Embedding
Hash based algorithms
Hash functions
Learning
local similarity embedding
Optimization
scalable hashing
Semantics
Similarity
Symmetric matrices
Training
title Fast Cross-Modal Hashing With Global and Local Similarity Embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Cross-Modal%20Hashing%20With%20Global%20and%20Local%20Similarity%20Embedding&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wang,%20Yongxin&rft.date=2022-10-01&rft.volume=52&rft.issue=10&rft.spage=10064&rft.epage=10077&rft.pages=10064-10077&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3059886&rft_dat=%3Cproquest_RIE%3E2504352842%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716347401&rft_id=info:pmid/33750723&rft_ieee_id=9382960&rfr_iscdi=true