Lung Diseases Classification by Analysis of Lung Tissue Densities

Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2020-09, Vol.18 (9), p.1329-1336
Hauptverfasser: Araujo Alves, Shara Shami, de Souza Reboucas, Elizangela, Freitas de Oliveira, Saulo Anderson, Magalhaes Braga, Alan, Reboucas Filho, Pedro Pedrosa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1336
container_issue 9
container_start_page 1329
container_title Revista IEEE América Latina
container_volume 18
creator Araujo Alves, Shara Shami
de Souza Reboucas, Elizangela
Freitas de Oliveira, Saulo Anderson
Magalhaes Braga, Alan
Reboucas Filho, Pedro Pedrosa
description Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.
doi_str_mv 10.1109/TLA.2020.9381790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9381790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9381790</ieee_id><sourcerecordid>2505711779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e6ca139a075d87f8887a2adf64530bb6ee1a8b5581c867650883ee787b6ac3ec3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvgpeA59T96O7OHkPrFwS81POy2U5kS01qJjn035vaKp7mhXneYXgYuxV8JgR3D6uymEku-cwpENbxMzYReg45d06e_8uX7Ipow7kCA2rCinJoPrJlIgyElC22gSjVKYY-tU1W7bOiCds9JcraOvthV4lowGyJDaU-IV2zizpsCW9Oc8renx5Xi5e8fHt-XRRlHqUUfY4mBqFc4FavwdYAYIMM69rMteJVZRBFgEprEBGMNZoDKEQLtjIhKoxqyu6Pd3dd-zUg9X7TDt34HXmpubZCWOtGih-p2LVEHdZ-16XP0O294P4gyo-i_EGUP4kaK3fHSkLEP_x3-w0IwGM3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505711779</pqid></control><display><type>article</type><title>Lung Diseases Classification by Analysis of Lung Tissue Densities</title><source>IEEE Electronic Library (IEL)</source><creator>Araujo Alves, Shara Shami ; de Souza Reboucas, Elizangela ; Freitas de Oliveira, Saulo Anderson ; Magalhaes Braga, Alan ; Reboucas Filho, Pedro Pedrosa</creator><creatorcontrib>Araujo Alves, Shara Shami ; de Souza Reboucas, Elizangela ; Freitas de Oliveira, Saulo Anderson ; Magalhaes Braga, Alan ; Reboucas Filho, Pedro Pedrosa</creatorcontrib><description>Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9381790</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Computed tomography ; Computerized Tomography ; Feature extraction ; Human tissues ; IEEE transactions ; Image segmentation ; Lung ; Lung Disease ; Lung diseases ; Machine learning ; Medical diagnostic imaging ; Medical imaging ; Performance evaluation ; Physicians ; Proposals ; Pulmonary diseases ; Support vector machines ; Thorax</subject><ispartof>Revista IEEE América Latina, 2020-09, Vol.18 (9), p.1329-1336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-e6ca139a075d87f8887a2adf64530bb6ee1a8b5581c867650883ee787b6ac3ec3</citedby><orcidid>0000-0001-7913-0008 ; 0000-0003-3996-4555 ; 0000-0001-6362-6113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9381790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9381790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Araujo Alves, Shara Shami</creatorcontrib><creatorcontrib>de Souza Reboucas, Elizangela</creatorcontrib><creatorcontrib>Freitas de Oliveira, Saulo Anderson</creatorcontrib><creatorcontrib>Magalhaes Braga, Alan</creatorcontrib><creatorcontrib>Reboucas Filho, Pedro Pedrosa</creatorcontrib><title>Lung Diseases Classification by Analysis of Lung Tissue Densities</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.</description><subject>Computed tomography</subject><subject>Computerized Tomography</subject><subject>Feature extraction</subject><subject>Human tissues</subject><subject>IEEE transactions</subject><subject>Image segmentation</subject><subject>Lung</subject><subject>Lung Disease</subject><subject>Lung diseases</subject><subject>Machine learning</subject><subject>Medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Performance evaluation</subject><subject>Physicians</subject><subject>Proposals</subject><subject>Pulmonary diseases</subject><subject>Support vector machines</subject><subject>Thorax</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvgpeA59T96O7OHkPrFwS81POy2U5kS01qJjn035vaKp7mhXneYXgYuxV8JgR3D6uymEku-cwpENbxMzYReg45d06e_8uX7Ipow7kCA2rCinJoPrJlIgyElC22gSjVKYY-tU1W7bOiCds9JcraOvthV4lowGyJDaU-IV2zizpsCW9Oc8renx5Xi5e8fHt-XRRlHqUUfY4mBqFc4FavwdYAYIMM69rMteJVZRBFgEprEBGMNZoDKEQLtjIhKoxqyu6Pd3dd-zUg9X7TDt34HXmpubZCWOtGih-p2LVEHdZ-16XP0O294P4gyo-i_EGUP4kaK3fHSkLEP_x3-w0IwGM3</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Araujo Alves, Shara Shami</creator><creator>de Souza Reboucas, Elizangela</creator><creator>Freitas de Oliveira, Saulo Anderson</creator><creator>Magalhaes Braga, Alan</creator><creator>Reboucas Filho, Pedro Pedrosa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7913-0008</orcidid><orcidid>https://orcid.org/0000-0003-3996-4555</orcidid><orcidid>https://orcid.org/0000-0001-6362-6113</orcidid></search><sort><creationdate>20200901</creationdate><title>Lung Diseases Classification by Analysis of Lung Tissue Densities</title><author>Araujo Alves, Shara Shami ; de Souza Reboucas, Elizangela ; Freitas de Oliveira, Saulo Anderson ; Magalhaes Braga, Alan ; Reboucas Filho, Pedro Pedrosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e6ca139a075d87f8887a2adf64530bb6ee1a8b5581c867650883ee787b6ac3ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Computerized Tomography</topic><topic>Feature extraction</topic><topic>Human tissues</topic><topic>IEEE transactions</topic><topic>Image segmentation</topic><topic>Lung</topic><topic>Lung Disease</topic><topic>Lung diseases</topic><topic>Machine learning</topic><topic>Medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Performance evaluation</topic><topic>Physicians</topic><topic>Proposals</topic><topic>Pulmonary diseases</topic><topic>Support vector machines</topic><topic>Thorax</topic><toplevel>online_resources</toplevel><creatorcontrib>Araujo Alves, Shara Shami</creatorcontrib><creatorcontrib>de Souza Reboucas, Elizangela</creatorcontrib><creatorcontrib>Freitas de Oliveira, Saulo Anderson</creatorcontrib><creatorcontrib>Magalhaes Braga, Alan</creatorcontrib><creatorcontrib>Reboucas Filho, Pedro Pedrosa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Araujo Alves, Shara Shami</au><au>de Souza Reboucas, Elizangela</au><au>Freitas de Oliveira, Saulo Anderson</au><au>Magalhaes Braga, Alan</au><au>Reboucas Filho, Pedro Pedrosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lung Diseases Classification by Analysis of Lung Tissue Densities</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>18</volume><issue>9</issue><spage>1329</spage><epage>1336</epage><pages>1329-1336</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9381790</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7913-0008</orcidid><orcidid>https://orcid.org/0000-0003-3996-4555</orcidid><orcidid>https://orcid.org/0000-0001-6362-6113</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2020-09, Vol.18 (9), p.1329-1336
issn 1548-0992
1548-0992
language eng
recordid cdi_ieee_primary_9381790
source IEEE Electronic Library (IEL)
subjects Computed tomography
Computerized Tomography
Feature extraction
Human tissues
IEEE transactions
Image segmentation
Lung
Lung Disease
Lung diseases
Machine learning
Medical diagnostic imaging
Medical imaging
Performance evaluation
Physicians
Proposals
Pulmonary diseases
Support vector machines
Thorax
title Lung Diseases Classification by Analysis of Lung Tissue Densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lung%20Diseases%20Classification%20by%20Analysis%20of%20Lung%20Tissue%20Densities&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Araujo%20Alves,%20Shara%20Shami&rft.date=2020-09-01&rft.volume=18&rft.issue=9&rft.spage=1329&rft.epage=1336&rft.pages=1329-1336&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9381790&rft_dat=%3Cproquest_RIE%3E2505711779%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505711779&rft_id=info:pmid/&rft_ieee_id=9381790&rfr_iscdi=true