Lung Diseases Classification by Analysis of Lung Tissue Densities
Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2020-09, Vol.18 (9), p.1329-1336 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1336 |
---|---|
container_issue | 9 |
container_start_page | 1329 |
container_title | Revista IEEE América Latina |
container_volume | 18 |
creator | Araujo Alves, Shara Shami de Souza Reboucas, Elizangela Freitas de Oliveira, Saulo Anderson Magalhaes Braga, Alan Reboucas Filho, Pedro Pedrosa |
description | Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications. |
doi_str_mv | 10.1109/TLA.2020.9381790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9381790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9381790</ieee_id><sourcerecordid>2505711779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e6ca139a075d87f8887a2adf64530bb6ee1a8b5581c867650883ee787b6ac3ec3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvgpeA59T96O7OHkPrFwS81POy2U5kS01qJjn035vaKp7mhXneYXgYuxV8JgR3D6uymEku-cwpENbxMzYReg45d06e_8uX7Ipow7kCA2rCinJoPrJlIgyElC22gSjVKYY-tU1W7bOiCds9JcraOvthV4lowGyJDaU-IV2zizpsCW9Oc8renx5Xi5e8fHt-XRRlHqUUfY4mBqFc4FavwdYAYIMM69rMteJVZRBFgEprEBGMNZoDKEQLtjIhKoxqyu6Pd3dd-zUg9X7TDt34HXmpubZCWOtGih-p2LVEHdZ-16XP0O294P4gyo-i_EGUP4kaK3fHSkLEP_x3-w0IwGM3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505711779</pqid></control><display><type>article</type><title>Lung Diseases Classification by Analysis of Lung Tissue Densities</title><source>IEEE Electronic Library (IEL)</source><creator>Araujo Alves, Shara Shami ; de Souza Reboucas, Elizangela ; Freitas de Oliveira, Saulo Anderson ; Magalhaes Braga, Alan ; Reboucas Filho, Pedro Pedrosa</creator><creatorcontrib>Araujo Alves, Shara Shami ; de Souza Reboucas, Elizangela ; Freitas de Oliveira, Saulo Anderson ; Magalhaes Braga, Alan ; Reboucas Filho, Pedro Pedrosa</creatorcontrib><description>Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9381790</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Computed tomography ; Computerized Tomography ; Feature extraction ; Human tissues ; IEEE transactions ; Image segmentation ; Lung ; Lung Disease ; Lung diseases ; Machine learning ; Medical diagnostic imaging ; Medical imaging ; Performance evaluation ; Physicians ; Proposals ; Pulmonary diseases ; Support vector machines ; Thorax</subject><ispartof>Revista IEEE América Latina, 2020-09, Vol.18 (9), p.1329-1336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-e6ca139a075d87f8887a2adf64530bb6ee1a8b5581c867650883ee787b6ac3ec3</citedby><orcidid>0000-0001-7913-0008 ; 0000-0003-3996-4555 ; 0000-0001-6362-6113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9381790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9381790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Araujo Alves, Shara Shami</creatorcontrib><creatorcontrib>de Souza Reboucas, Elizangela</creatorcontrib><creatorcontrib>Freitas de Oliveira, Saulo Anderson</creatorcontrib><creatorcontrib>Magalhaes Braga, Alan</creatorcontrib><creatorcontrib>Reboucas Filho, Pedro Pedrosa</creatorcontrib><title>Lung Diseases Classification by Analysis of Lung Tissue Densities</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.</description><subject>Computed tomography</subject><subject>Computerized Tomography</subject><subject>Feature extraction</subject><subject>Human tissues</subject><subject>IEEE transactions</subject><subject>Image segmentation</subject><subject>Lung</subject><subject>Lung Disease</subject><subject>Lung diseases</subject><subject>Machine learning</subject><subject>Medical diagnostic imaging</subject><subject>Medical imaging</subject><subject>Performance evaluation</subject><subject>Physicians</subject><subject>Proposals</subject><subject>Pulmonary diseases</subject><subject>Support vector machines</subject><subject>Thorax</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvgpeA59T96O7OHkPrFwS81POy2U5kS01qJjn035vaKp7mhXneYXgYuxV8JgR3D6uymEku-cwpENbxMzYReg45d06e_8uX7Ipow7kCA2rCinJoPrJlIgyElC22gSjVKYY-tU1W7bOiCds9JcraOvthV4lowGyJDaU-IV2zizpsCW9Oc8renx5Xi5e8fHt-XRRlHqUUfY4mBqFc4FavwdYAYIMM69rMteJVZRBFgEprEBGMNZoDKEQLtjIhKoxqyu6Pd3dd-zUg9X7TDt34HXmpubZCWOtGih-p2LVEHdZ-16XP0O294P4gyo-i_EGUP4kaK3fHSkLEP_x3-w0IwGM3</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Araujo Alves, Shara Shami</creator><creator>de Souza Reboucas, Elizangela</creator><creator>Freitas de Oliveira, Saulo Anderson</creator><creator>Magalhaes Braga, Alan</creator><creator>Reboucas Filho, Pedro Pedrosa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7913-0008</orcidid><orcidid>https://orcid.org/0000-0003-3996-4555</orcidid><orcidid>https://orcid.org/0000-0001-6362-6113</orcidid></search><sort><creationdate>20200901</creationdate><title>Lung Diseases Classification by Analysis of Lung Tissue Densities</title><author>Araujo Alves, Shara Shami ; de Souza Reboucas, Elizangela ; Freitas de Oliveira, Saulo Anderson ; Magalhaes Braga, Alan ; Reboucas Filho, Pedro Pedrosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e6ca139a075d87f8887a2adf64530bb6ee1a8b5581c867650883ee787b6ac3ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Computerized Tomography</topic><topic>Feature extraction</topic><topic>Human tissues</topic><topic>IEEE transactions</topic><topic>Image segmentation</topic><topic>Lung</topic><topic>Lung Disease</topic><topic>Lung diseases</topic><topic>Machine learning</topic><topic>Medical diagnostic imaging</topic><topic>Medical imaging</topic><topic>Performance evaluation</topic><topic>Physicians</topic><topic>Proposals</topic><topic>Pulmonary diseases</topic><topic>Support vector machines</topic><topic>Thorax</topic><toplevel>online_resources</toplevel><creatorcontrib>Araujo Alves, Shara Shami</creatorcontrib><creatorcontrib>de Souza Reboucas, Elizangela</creatorcontrib><creatorcontrib>Freitas de Oliveira, Saulo Anderson</creatorcontrib><creatorcontrib>Magalhaes Braga, Alan</creatorcontrib><creatorcontrib>Reboucas Filho, Pedro Pedrosa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Araujo Alves, Shara Shami</au><au>de Souza Reboucas, Elizangela</au><au>Freitas de Oliveira, Saulo Anderson</au><au>Magalhaes Braga, Alan</au><au>Reboucas Filho, Pedro Pedrosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lung Diseases Classification by Analysis of Lung Tissue Densities</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>18</volume><issue>9</issue><spage>1329</spage><epage>1336</epage><pages>1329-1336</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>Lung diseases identification based on analysis and processing of medical images is important to assist medical doctors during the diagnosis process. In this context, this paper proposes a new feature extraction method based on human tissue density patterns, namely Analysis of Human Tissue Densities in Lung Diseases. The proposed method uses human tissues radiological densities, in Hounsfield Units, to perform the features extraction on thorax computerized tomography images. We compared the proposed method against the Gray Level Co-occurrence Matrix and Statistical Moments to accomplish the performance evaluation alongside four machine learning classifiers. Overall, the results revealed that the proposal achieved higher accuracy ratios while it took the lowest runtime in all performed experiments. Thus, we consider our proposal as a valid alternative to be used in real-time applications.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9381790</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7913-0008</orcidid><orcidid>https://orcid.org/0000-0003-3996-4555</orcidid><orcidid>https://orcid.org/0000-0001-6362-6113</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2020-09, Vol.18 (9), p.1329-1336 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_ieee_primary_9381790 |
source | IEEE Electronic Library (IEL) |
subjects | Computed tomography Computerized Tomography Feature extraction Human tissues IEEE transactions Image segmentation Lung Lung Disease Lung diseases Machine learning Medical diagnostic imaging Medical imaging Performance evaluation Physicians Proposals Pulmonary diseases Support vector machines Thorax |
title | Lung Diseases Classification by Analysis of Lung Tissue Densities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lung%20Diseases%20Classification%20by%20Analysis%20of%20Lung%20Tissue%20Densities&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Araujo%20Alves,%20Shara%20Shami&rft.date=2020-09-01&rft.volume=18&rft.issue=9&rft.spage=1329&rft.epage=1336&rft.pages=1329-1336&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9381790&rft_dat=%3Cproquest_RIE%3E2505711779%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505711779&rft_id=info:pmid/&rft_ieee_id=9381790&rfr_iscdi=true |