Improving Sparse Noise Removal via L0-Norm Optimization for Hyperspectral Image Restoration

This letter presents a novel method for hyperspectral image (HSI) restoration, which aims to improve the removal effectiveness of the sparse noise. In contrast to the existing approaches that employ the L_{1} -norm for tractable optimization, we apply the non-convex non-smooth L_{0} -norm to measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Zhong, Chongxiao, Zhang, Junping, Guo, Qingle, Zhang, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Zhong, Chongxiao
Zhang, Junping
Guo, Qingle
Zhang, Ye
description This letter presents a novel method for hyperspectral image (HSI) restoration, which aims to improve the removal effectiveness of the sparse noise. In contrast to the existing approaches that employ the L_{1} -norm for tractable optimization, we apply the non-convex non-smooth L_{0} -norm to measure the sparsity of the impulse noise, stripes, deadlines, and other outliers accurately. By combining the low-rank and total variation (TV) priors to exploit the intrinsic properties of the clean HSI and using the patch scheme to preserve local features, the L_{0} -PLRTV restoration model is established. In order to deal with the optimization problem, we introduce an equivalent primal-dual formulation to reformulate the L_{0} -norm term, and develop a minimization approach for the objective function based on the alternating iterative method. The simulated and real data experiments confirm that the proposed algorithm can effectively reduce the sparse noise in HSI.
doi_str_mv 10.1109/LGRS.2021.3062657
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9381405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9381405</ieee_id><sourcerecordid>9381405</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-12a3c23b0a3a4c311186a772b79705f53fd0a67d00bedf029f9fc6dcb224c30e3</originalsourceid><addsrcrecordid>eNotjNFKwzAYhYMoOKcPIN7kBVL_JE2TXMrQrVA22HYheDHSNhmRdQlpKcynd3PenO9cfOcg9EwhoxT0azVfbzIGjGYcClYIeYMmVAhFQEh6e-m5IEKrz3v00PffACxXSk7QV9nFFEZ_3ONNNKm3eBn8Ode2C6M54NEbXAFZhtThVRx853_M4MMRu5Dw4hRt6qNthnRWy87sL8N-COnPeUR3zhx6-_TPKdp-vG9nC1Kt5uXsrSJew0AoM7xhvAbDTd5wSqkqjJSsllqCcIK7FkwhW4Datg6Ydto1RdvUjJ11sHyKXq633lq7i8l3Jp12miuag-C_ZIhSsw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving Sparse Noise Removal via L0-Norm Optimization for Hyperspectral Image Restoration</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Chongxiao ; Zhang, Junping ; Guo, Qingle ; Zhang, Ye</creator><creatorcontrib>Zhong, Chongxiao ; Zhang, Junping ; Guo, Qingle ; Zhang, Ye</creatorcontrib><description><![CDATA[This letter presents a novel method for hyperspectral image (HSI) restoration, which aims to improve the removal effectiveness of the sparse noise. In contrast to the existing approaches that employ the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm for tractable optimization, we apply the non-convex non-smooth <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm to measure the sparsity of the impulse noise, stripes, deadlines, and other outliers accurately. By combining the low-rank and total variation (TV) priors to exploit the intrinsic properties of the clean HSI and using the patch scheme to preserve local features, the <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-PLRTV restoration model is established. In order to deal with the optimization problem, we introduce an equivalent primal-dual formulation to reformulate the <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm term, and develop a minimization approach for the objective function based on the alternating iterative method. The simulated and real data experiments confirm that the proposed algorithm can effectively reduce the sparse noise in HSI.]]></description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3062657</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L ₀-norm optimization ; Data models ; Hyperspectral image (HSI) restoration ; Hyperspectral imaging ; Image restoration ; low-rank ; Minimization ; Noise measurement ; Noise reduction ; sparse noise ; total variation (TV)</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1082-114X ; 0000-0001-8721-4535 ; 0000-0002-3448-5320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9381405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9381405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Chongxiao</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Guo, Qingle</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><title>Improving Sparse Noise Removal via L0-Norm Optimization for Hyperspectral Image Restoration</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description><![CDATA[This letter presents a novel method for hyperspectral image (HSI) restoration, which aims to improve the removal effectiveness of the sparse noise. In contrast to the existing approaches that employ the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm for tractable optimization, we apply the non-convex non-smooth <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm to measure the sparsity of the impulse noise, stripes, deadlines, and other outliers accurately. By combining the low-rank and total variation (TV) priors to exploit the intrinsic properties of the clean HSI and using the patch scheme to preserve local features, the <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-PLRTV restoration model is established. In order to deal with the optimization problem, we introduce an equivalent primal-dual formulation to reformulate the <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm term, and develop a minimization approach for the objective function based on the alternating iterative method. The simulated and real data experiments confirm that the proposed algorithm can effectively reduce the sparse noise in HSI.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L ₀-norm optimization</subject><subject>Data models</subject><subject>Hyperspectral image (HSI) restoration</subject><subject>Hyperspectral imaging</subject><subject>Image restoration</subject><subject>low-rank</subject><subject>Minimization</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>sparse noise</subject><subject>total variation (TV)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjNFKwzAYhYMoOKcPIN7kBVL_JE2TXMrQrVA22HYheDHSNhmRdQlpKcynd3PenO9cfOcg9EwhoxT0azVfbzIGjGYcClYIeYMmVAhFQEh6e-m5IEKrz3v00PffACxXSk7QV9nFFEZ_3ONNNKm3eBn8Ode2C6M54NEbXAFZhtThVRx853_M4MMRu5Dw4hRt6qNthnRWy87sL8N-COnPeUR3zhx6-_TPKdp-vG9nC1Kt5uXsrSJew0AoM7xhvAbDTd5wSqkqjJSsllqCcIK7FkwhW4Datg6Ydto1RdvUjJ11sHyKXq633lq7i8l3Jp12miuag-C_ZIhSsw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhong, Chongxiao</creator><creator>Zhang, Junping</creator><creator>Guo, Qingle</creator><creator>Zhang, Ye</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-3448-5320</orcidid></search><sort><creationdate>2022</creationdate><title>Improving Sparse Noise Removal via L0-Norm Optimization for Hyperspectral Image Restoration</title><author>Zhong, Chongxiao ; Zhang, Junping ; Guo, Qingle ; Zhang, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-12a3c23b0a3a4c311186a772b79705f53fd0a67d00bedf029f9fc6dcb224c30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L ₀-norm optimization</topic><topic>Data models</topic><topic>Hyperspectral image (HSI) restoration</topic><topic>Hyperspectral imaging</topic><topic>Image restoration</topic><topic>low-rank</topic><topic>Minimization</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>sparse noise</topic><topic>total variation (TV)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Chongxiao</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Guo, Qingle</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Chongxiao</au><au>Zhang, Junping</au><au>Guo, Qingle</au><au>Zhang, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Sparse Noise Removal via L0-Norm Optimization for Hyperspectral Image Restoration</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract><![CDATA[This letter presents a novel method for hyperspectral image (HSI) restoration, which aims to improve the removal effectiveness of the sparse noise. In contrast to the existing approaches that employ the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm for tractable optimization, we apply the non-convex non-smooth <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm to measure the sparsity of the impulse noise, stripes, deadlines, and other outliers accurately. By combining the low-rank and total variation (TV) priors to exploit the intrinsic properties of the clean HSI and using the patch scheme to preserve local features, the <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-PLRTV restoration model is established. In order to deal with the optimization problem, we introduce an equivalent primal-dual formulation to reformulate the <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm term, and develop a minimization approach for the objective function based on the alternating iterative method. The simulated and real data experiments confirm that the proposed algorithm can effectively reduce the sparse noise in HSI.]]></abstract><pub>IEEE</pub><doi>10.1109/LGRS.2021.3062657</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-3448-5320</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9381405
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L ₀-norm optimization
Data models
Hyperspectral image (HSI) restoration
Hyperspectral imaging
Image restoration
low-rank
Minimization
Noise measurement
Noise reduction
sparse noise
total variation (TV)
title Improving Sparse Noise Removal via L0-Norm Optimization for Hyperspectral Image Restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Sparse%20Noise%20Removal%20via%20L0-Norm%20Optimization%20for%20Hyperspectral%20Image%20Restoration&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhong,%20Chongxiao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3062657&rft_dat=%3Cieee_RIE%3E9381405%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9381405&rfr_iscdi=true