A fuzzy-genetic approach for automatic tuning of a PID controller

A novel method employing fuzzy logic and a genetic algorithm for automatic tuning of a Proportional Integral Derivative (PID) controller is presented. The technique adopted is based on the theory of dead-beat control. A fuzzy logic technique has been used to predict the controller output and the cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chakraborty, U.K., Bandyopadhyay, R., Patranabis, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312 vol.1
container_issue
container_start_page 305
container_title
container_volume
creator Chakraborty, U.K.
Bandyopadhyay, R.
Patranabis, D.
description A novel method employing fuzzy logic and a genetic algorithm for automatic tuning of a Proportional Integral Derivative (PID) controller is presented. The technique adopted is based on the theory of dead-beat control. A fuzzy logic technique has been used to predict the controller output and the crisp consequent values of the rulebase on the Takagi-Sugeno model are optimized using a genetic algorithm. The proposition is an extension of the work by R. Bandyopadhyay and D. Patranabis (2001), where the rulebase was prepared based on the knowledge of process experts. Significant improvement has been obtained using a genetic algorithm by optimizing the crisp consequent values of the rulebase. As can be seen from the simulated results, the method shows substantial improvement over the controller tuned with the Ziegler-Nichols formula (J.G. Ziegler and N.B. Nichols, 1942) and the PID controller proposed by Bandyopadhyay and Patranabis.
doi_str_mv 10.1109/ITI.2001.938034
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_938034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>938034</ieee_id><sourcerecordid>938034</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-65fee4470d6e559ad37de7ec430457f209191e08d882cd45dce432c89ed392443</originalsourceid><addsrcrecordid>eNotj8tqwzAQAAVtoSH1udCTfsDuSitb2qNJHzEE2kN6Dqq0Tg2Obfw4JF9fSnoamMPACPGoIFMK6LnaV5kGUBmhAzQ3IiHrKEcqbEGobsVKIUKqQOl7kUxT8w2gwRGSWomylPVyuZzTI3c8N0H6YRh7H35k3Y_SL3N_8n96XrqmO8q-ll5-Vi8y9N089m3L44O4q307cfLPtfh6e91vtunu473alLu0UdbMaZHXzMZYiAXnOfmINrLlYBBMbmsNpEgxuOicDtHkMbBBHRxxRNLG4Fo8XbsNMx-GsTn58Xy4PuMv7o1JSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fuzzy-genetic approach for automatic tuning of a PID controller</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chakraborty, U.K. ; Bandyopadhyay, R. ; Patranabis, D.</creator><creatorcontrib>Chakraborty, U.K. ; Bandyopadhyay, R. ; Patranabis, D.</creatorcontrib><description>A novel method employing fuzzy logic and a genetic algorithm for automatic tuning of a Proportional Integral Derivative (PID) controller is presented. The technique adopted is based on the theory of dead-beat control. A fuzzy logic technique has been used to predict the controller output and the crisp consequent values of the rulebase on the Takagi-Sugeno model are optimized using a genetic algorithm. The proposition is an extension of the work by R. Bandyopadhyay and D. Patranabis (2001), where the rulebase was prepared based on the knowledge of process experts. Significant improvement has been obtained using a genetic algorithm by optimizing the crisp consequent values of the rulebase. As can be seen from the simulated results, the method shows substantial improvement over the controller tuned with the Ziegler-Nichols formula (J.G. Ziegler and N.B. Nichols, 1942) and the PID controller proposed by Bandyopadhyay and Patranabis.</description><identifier>ISSN: 1330-1012</identifier><identifier>ISBN: 9789539676931</identifier><identifier>ISBN: 9539676932</identifier><identifier>DOI: 10.1109/ITI.2001.938034</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Error correction ; Genetic algorithms ; Instruments ; Logic ; PD control ; Pi control ; Proportional control ; Sampling methods ; Three-term control</subject><ispartof>Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001, 2001, p.305-312 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/938034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/938034$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chakraborty, U.K.</creatorcontrib><creatorcontrib>Bandyopadhyay, R.</creatorcontrib><creatorcontrib>Patranabis, D.</creatorcontrib><title>A fuzzy-genetic approach for automatic tuning of a PID controller</title><title>Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001</title><addtitle>ITI</addtitle><description>A novel method employing fuzzy logic and a genetic algorithm for automatic tuning of a Proportional Integral Derivative (PID) controller is presented. The technique adopted is based on the theory of dead-beat control. A fuzzy logic technique has been used to predict the controller output and the crisp consequent values of the rulebase on the Takagi-Sugeno model are optimized using a genetic algorithm. The proposition is an extension of the work by R. Bandyopadhyay and D. Patranabis (2001), where the rulebase was prepared based on the knowledge of process experts. Significant improvement has been obtained using a genetic algorithm by optimizing the crisp consequent values of the rulebase. As can be seen from the simulated results, the method shows substantial improvement over the controller tuned with the Ziegler-Nichols formula (J.G. Ziegler and N.B. Nichols, 1942) and the PID controller proposed by Bandyopadhyay and Patranabis.</description><subject>Automatic control</subject><subject>Error correction</subject><subject>Genetic algorithms</subject><subject>Instruments</subject><subject>Logic</subject><subject>PD control</subject><subject>Pi control</subject><subject>Proportional control</subject><subject>Sampling methods</subject><subject>Three-term control</subject><issn>1330-1012</issn><isbn>9789539676931</isbn><isbn>9539676932</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tqwzAQAAVtoSH1udCTfsDuSitb2qNJHzEE2kN6Dqq0Tg2Obfw4JF9fSnoamMPACPGoIFMK6LnaV5kGUBmhAzQ3IiHrKEcqbEGobsVKIUKqQOl7kUxT8w2gwRGSWomylPVyuZzTI3c8N0H6YRh7H35k3Y_SL3N_8n96XrqmO8q-ll5-Vi8y9N089m3L44O4q307cfLPtfh6e91vtunu473alLu0UdbMaZHXzMZYiAXnOfmINrLlYBBMbmsNpEgxuOicDtHkMbBBHRxxRNLG4Fo8XbsNMx-GsTn58Xy4PuMv7o1JSw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Chakraborty, U.K.</creator><creator>Bandyopadhyay, R.</creator><creator>Patranabis, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>A fuzzy-genetic approach for automatic tuning of a PID controller</title><author>Chakraborty, U.K. ; Bandyopadhyay, R. ; Patranabis, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-65fee4470d6e559ad37de7ec430457f209191e08d882cd45dce432c89ed392443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automatic control</topic><topic>Error correction</topic><topic>Genetic algorithms</topic><topic>Instruments</topic><topic>Logic</topic><topic>PD control</topic><topic>Pi control</topic><topic>Proportional control</topic><topic>Sampling methods</topic><topic>Three-term control</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, U.K.</creatorcontrib><creatorcontrib>Bandyopadhyay, R.</creatorcontrib><creatorcontrib>Patranabis, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chakraborty, U.K.</au><au>Bandyopadhyay, R.</au><au>Patranabis, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fuzzy-genetic approach for automatic tuning of a PID controller</atitle><btitle>Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001</btitle><stitle>ITI</stitle><date>2001</date><risdate>2001</risdate><spage>305</spage><epage>312 vol.1</epage><pages>305-312 vol.1</pages><issn>1330-1012</issn><isbn>9789539676931</isbn><isbn>9539676932</isbn><abstract>A novel method employing fuzzy logic and a genetic algorithm for automatic tuning of a Proportional Integral Derivative (PID) controller is presented. The technique adopted is based on the theory of dead-beat control. A fuzzy logic technique has been used to predict the controller output and the crisp consequent values of the rulebase on the Takagi-Sugeno model are optimized using a genetic algorithm. The proposition is an extension of the work by R. Bandyopadhyay and D. Patranabis (2001), where the rulebase was prepared based on the knowledge of process experts. Significant improvement has been obtained using a genetic algorithm by optimizing the crisp consequent values of the rulebase. As can be seen from the simulated results, the method shows substantial improvement over the controller tuned with the Ziegler-Nichols formula (J.G. Ziegler and N.B. Nichols, 1942) and the PID controller proposed by Bandyopadhyay and Patranabis.</abstract><pub>IEEE</pub><doi>10.1109/ITI.2001.938034</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1330-1012
ispartof Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001, 2001, p.305-312 vol.1
issn 1330-1012
language eng
recordid cdi_ieee_primary_938034
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Error correction
Genetic algorithms
Instruments
Logic
PD control
Pi control
Proportional control
Sampling methods
Three-term control
title A fuzzy-genetic approach for automatic tuning of a PID controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fuzzy-genetic%20approach%20for%20automatic%20tuning%20of%20a%20PID%20controller&rft.btitle=Proceedings%20of%20the%2023rd%20International%20Conference%20on%20Information%20Technology%20Interfaces,%202001.%20ITI%202001&rft.au=Chakraborty,%20U.K.&rft.date=2001&rft.spage=305&rft.epage=312%20vol.1&rft.pages=305-312%20vol.1&rft.issn=1330-1012&rft.isbn=9789539676931&rft.isbn_list=9539676932&rft_id=info:doi/10.1109/ITI.2001.938034&rft_dat=%3Cieee_6IE%3E938034%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=938034&rfr_iscdi=true