Variability in the execution of multimedia applications and implications for architecture

Multimedia applications are an increasingly important workload for general-purpose processors. This paper analyzes frame-level execution time variability for several multimedia applications on general-purpose architectures. There are two reasons for such an analysis. First, it has been conjectured t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings 28th Annual International Symposium on Computer Architecture 2001, p.254-265
Hauptverfasser: Hughes, C.J., Kaul, P., Adve, S.V., Jain, R., Park, C., Srinivasan, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multimedia applications are an increasingly important workload for general-purpose processors. This paper analyzes frame-level execution time variability for several multimedia applications on general-purpose architectures. There are two reasons for such an analysis. First, it has been conjectured that complex features of such architectures (e.g., out-of-order issue) result in unpredictable execution times, making them unsuitable for meeting real-time requirements of multimedia applications. Our analysis tests this conjecture. Second, such an analysis can be used to effectively employ recently proposed adaptive architectures. We find that while execution time varies from frame to frame for many multimedia applications, the variability is mostly caused by the application algorithm and the media input. Aggressive architectural features induce little additional variability (and unpredictability) in execution time, in contrast to conventional wisdom. The presence of frame-level execution time variability motivates frame-level architectural adaptation (e.g., to save energy). Additionally, our results show that execution time generally varies slowly, implying it is possible to dynamically predict the behavior of future frames on a variety of hardware configurations for effective adaptation.
ISSN:1063-6897
2575-713X
DOI:10.1109/ISCA.2001.937454