NanoFabrics: spatial computing using molecular electronics
The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 178 |
container_title | |
container_volume | |
creator | Copen Goldstein, S. Budiu, M. |
description | The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits. |
doi_str_mv | 10.1109/ISCA.2001.937446 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_937446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>937446</ieee_id><sourcerecordid>937446</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-81ba25d59f82e2965a075164b317d7cafb0f5dbe9480a231c719e91ff0a564453</originalsourceid><addsrcrecordid>eNotj01Lw0AYhBc_wLR6F0_5A4n77me2txKsFooeVPBW3mx2ZSVfZJOD_96UepmZwzMDQ8g90ByAmsf9e7nNGaWQG66FUBckYVLLTAP_uiQrqpWRAIrpK5IAVTxThdE3ZBXjz1IyRqqEbF6x63dYjcHGTRoHnAI2qe3bYZ5C953O8aRt3zg7NzimbgnT2HcLfkuuPTbR3f37mnzunj7Kl-zw9rwvt4csABVTVkCFTNbS-II5ZpREqiUoUXHQtbboK-plXTkjCoqMg9VgnAHvKUolhORr8nDeDc654zCGFsff4_ky_wMUFEhx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>NanoFabrics: spatial computing using molecular electronics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Copen Goldstein, S. ; Budiu, M.</creator><creatorcontrib>Copen Goldstein, S. ; Budiu, M.</creatorcontrib><description>The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.</description><identifier>ISSN: 1063-6897</identifier><identifier>ISBN: 0769511627</identifier><identifier>ISBN: 9780769511627</identifier><identifier>EISSN: 2575-713X</identifier><identifier>DOI: 10.1109/ISCA.2001.937446</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; Chemicals ; CMOS process ; Computer architecture ; Costs ; Fabrication ; Face ; Molecular electronics ; Nanotechnology ; Physics</subject><ispartof>Proceedings 28th Annual International Symposium on Computer Architecture, 2001, p.178-189</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/937446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/937446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Copen Goldstein, S.</creatorcontrib><creatorcontrib>Budiu, M.</creatorcontrib><title>NanoFabrics: spatial computing using molecular electronics</title><title>Proceedings 28th Annual International Symposium on Computer Architecture</title><addtitle>ISCA</addtitle><description>The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.</description><subject>Assembly</subject><subject>Chemicals</subject><subject>CMOS process</subject><subject>Computer architecture</subject><subject>Costs</subject><subject>Fabrication</subject><subject>Face</subject><subject>Molecular electronics</subject><subject>Nanotechnology</subject><subject>Physics</subject><issn>1063-6897</issn><issn>2575-713X</issn><isbn>0769511627</isbn><isbn>9780769511627</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AYhBc_wLR6F0_5A4n77me2txKsFooeVPBW3mx2ZSVfZJOD_96UepmZwzMDQ8g90ByAmsf9e7nNGaWQG66FUBckYVLLTAP_uiQrqpWRAIrpK5IAVTxThdE3ZBXjz1IyRqqEbF6x63dYjcHGTRoHnAI2qe3bYZ5C953O8aRt3zg7NzimbgnT2HcLfkuuPTbR3f37mnzunj7Kl-zw9rwvt4csABVTVkCFTNbS-II5ZpREqiUoUXHQtbboK-plXTkjCoqMg9VgnAHvKUolhORr8nDeDc654zCGFsff4_ky_wMUFEhx</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Copen Goldstein, S.</creator><creator>Budiu, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>NanoFabrics: spatial computing using molecular electronics</title><author>Copen Goldstein, S. ; Budiu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-81ba25d59f82e2965a075164b317d7cafb0f5dbe9480a231c719e91ff0a564453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Assembly</topic><topic>Chemicals</topic><topic>CMOS process</topic><topic>Computer architecture</topic><topic>Costs</topic><topic>Fabrication</topic><topic>Face</topic><topic>Molecular electronics</topic><topic>Nanotechnology</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Copen Goldstein, S.</creatorcontrib><creatorcontrib>Budiu, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Copen Goldstein, S.</au><au>Budiu, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>NanoFabrics: spatial computing using molecular electronics</atitle><btitle>Proceedings 28th Annual International Symposium on Computer Architecture</btitle><stitle>ISCA</stitle><date>2001</date><risdate>2001</risdate><spage>178</spage><epage>189</epage><pages>178-189</pages><issn>1063-6897</issn><eissn>2575-713X</eissn><isbn>0769511627</isbn><isbn>9780769511627</isbn><abstract>The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.</abstract><pub>IEEE</pub><doi>10.1109/ISCA.2001.937446</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6897 |
ispartof | Proceedings 28th Annual International Symposium on Computer Architecture, 2001, p.178-189 |
issn | 1063-6897 2575-713X |
language | eng |
recordid | cdi_ieee_primary_937446 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Assembly Chemicals CMOS process Computer architecture Costs Fabrication Face Molecular electronics Nanotechnology Physics |
title | NanoFabrics: spatial computing using molecular electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=NanoFabrics:%20spatial%20computing%20using%20molecular%20electronics&rft.btitle=Proceedings%2028th%20Annual%20International%20Symposium%20on%20Computer%20Architecture&rft.au=Copen%20Goldstein,%20S.&rft.date=2001&rft.spage=178&rft.epage=189&rft.pages=178-189&rft.issn=1063-6897&rft.eissn=2575-713X&rft.isbn=0769511627&rft.isbn_list=9780769511627&rft_id=info:doi/10.1109/ISCA.2001.937446&rft_dat=%3Cieee_6IE%3E937446%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=937446&rfr_iscdi=true |