NanoFabrics: spatial computing using molecular electronics

The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Copen Goldstein, S., Budiu, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 178
container_title
container_volume
creator Copen Goldstein, S.
Budiu, M.
description The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.
doi_str_mv 10.1109/ISCA.2001.937446
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_937446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>937446</ieee_id><sourcerecordid>937446</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-81ba25d59f82e2965a075164b317d7cafb0f5dbe9480a231c719e91ff0a564453</originalsourceid><addsrcrecordid>eNotj01Lw0AYhBc_wLR6F0_5A4n77me2txKsFooeVPBW3mx2ZSVfZJOD_96UepmZwzMDQ8g90ByAmsf9e7nNGaWQG66FUBckYVLLTAP_uiQrqpWRAIrpK5IAVTxThdE3ZBXjz1IyRqqEbF6x63dYjcHGTRoHnAI2qe3bYZ5C953O8aRt3zg7NzimbgnT2HcLfkuuPTbR3f37mnzunj7Kl-zw9rwvt4csABVTVkCFTNbS-II5ZpREqiUoUXHQtbboK-plXTkjCoqMg9VgnAHvKUolhORr8nDeDc654zCGFsff4_ky_wMUFEhx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>NanoFabrics: spatial computing using molecular electronics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Copen Goldstein, S. ; Budiu, M.</creator><creatorcontrib>Copen Goldstein, S. ; Budiu, M.</creatorcontrib><description>The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.</description><identifier>ISSN: 1063-6897</identifier><identifier>ISBN: 0769511627</identifier><identifier>ISBN: 9780769511627</identifier><identifier>EISSN: 2575-713X</identifier><identifier>DOI: 10.1109/ISCA.2001.937446</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly ; Chemicals ; CMOS process ; Computer architecture ; Costs ; Fabrication ; Face ; Molecular electronics ; Nanotechnology ; Physics</subject><ispartof>Proceedings 28th Annual International Symposium on Computer Architecture, 2001, p.178-189</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/937446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/937446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Copen Goldstein, S.</creatorcontrib><creatorcontrib>Budiu, M.</creatorcontrib><title>NanoFabrics: spatial computing using molecular electronics</title><title>Proceedings 28th Annual International Symposium on Computer Architecture</title><addtitle>ISCA</addtitle><description>The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.</description><subject>Assembly</subject><subject>Chemicals</subject><subject>CMOS process</subject><subject>Computer architecture</subject><subject>Costs</subject><subject>Fabrication</subject><subject>Face</subject><subject>Molecular electronics</subject><subject>Nanotechnology</subject><subject>Physics</subject><issn>1063-6897</issn><issn>2575-713X</issn><isbn>0769511627</isbn><isbn>9780769511627</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AYhBc_wLR6F0_5A4n77me2txKsFooeVPBW3mx2ZSVfZJOD_96UepmZwzMDQ8g90ByAmsf9e7nNGaWQG66FUBckYVLLTAP_uiQrqpWRAIrpK5IAVTxThdE3ZBXjz1IyRqqEbF6x63dYjcHGTRoHnAI2qe3bYZ5C953O8aRt3zg7NzimbgnT2HcLfkuuPTbR3f37mnzunj7Kl-zw9rwvt4csABVTVkCFTNbS-II5ZpREqiUoUXHQtbboK-plXTkjCoqMg9VgnAHvKUolhORr8nDeDc654zCGFsff4_ky_wMUFEhx</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Copen Goldstein, S.</creator><creator>Budiu, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>NanoFabrics: spatial computing using molecular electronics</title><author>Copen Goldstein, S. ; Budiu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-81ba25d59f82e2965a075164b317d7cafb0f5dbe9480a231c719e91ff0a564453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Assembly</topic><topic>Chemicals</topic><topic>CMOS process</topic><topic>Computer architecture</topic><topic>Costs</topic><topic>Fabrication</topic><topic>Face</topic><topic>Molecular electronics</topic><topic>Nanotechnology</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Copen Goldstein, S.</creatorcontrib><creatorcontrib>Budiu, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Copen Goldstein, S.</au><au>Budiu, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>NanoFabrics: spatial computing using molecular electronics</atitle><btitle>Proceedings 28th Annual International Symposium on Computer Architecture</btitle><stitle>ISCA</stitle><date>2001</date><risdate>2001</risdate><spage>178</spage><epage>189</epage><pages>178-189</pages><issn>1063-6897</issn><eissn>2575-713X</eissn><isbn>0769511627</isbn><isbn>9780769511627</isbn><abstract>The continuation of the remarkable exponential increases in processing power over the recent past faces imminent challenges due in part to the physics of deep-submicron CMOS devices and the costs of both chip masks and future fabrication plants. A promising solution to these problems is offered by an alternative to CMOS-based computing, chemically assembled electronic nanotechnology (CAEN). In this paper we outline how CAEN-based computing can become a reality. We briefly describe recent work in CAEN and how CAEN will affect computer architecture. We show how the inherently reconfigurable nature of CAEN devices can be exploited to provide high-density chips with defect tolerance at significantly reduced manufacturing costs. We develop a layered abstract architecture for CAEN-based computing devices and we present preliminary results which indicate that such devices will be competitive with CMOS circuits.</abstract><pub>IEEE</pub><doi>10.1109/ISCA.2001.937446</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6897
ispartof Proceedings 28th Annual International Symposium on Computer Architecture, 2001, p.178-189
issn 1063-6897
2575-713X
language eng
recordid cdi_ieee_primary_937446
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Assembly
Chemicals
CMOS process
Computer architecture
Costs
Fabrication
Face
Molecular electronics
Nanotechnology
Physics
title NanoFabrics: spatial computing using molecular electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=NanoFabrics:%20spatial%20computing%20using%20molecular%20electronics&rft.btitle=Proceedings%2028th%20Annual%20International%20Symposium%20on%20Computer%20Architecture&rft.au=Copen%20Goldstein,%20S.&rft.date=2001&rft.spage=178&rft.epage=189&rft.pages=178-189&rft.issn=1063-6897&rft.eissn=2575-713X&rft.isbn=0769511627&rft.isbn_list=9780769511627&rft_id=info:doi/10.1109/ISCA.2001.937446&rft_dat=%3Cieee_6IE%3E937446%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=937446&rfr_iscdi=true