Results on Super-Resolution and Target Identification Techniques From the SPERI Project
We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Ap...
Gespeichert in:
Veröffentlicht in: | IEEE aerospace and electronic systems magazine 2021-03, Vol.36 (3), p.24-35 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 3 |
container_start_page | 24 |
container_title | IEEE aerospace and electronic systems magazine |
container_volume | 36 |
creator | Bruggenwirth, Stefan Wagner, Simon Bieker, Tanja Battisti, Nicola Rispoli, Vincenzo Greco, Mario Pinelli, Gianpaolo Cataldo, Davide Martorella, Marco |
description | We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images. |
doi_str_mv | 10.1109/MAES.2020.3039849 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9374033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9374033</ieee_id><sourcerecordid>2501321288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_Na0yyLKXVgmJpK7oLmcwdO6Wd1CSz8N87Y4urC-eecx8fQreUjCgl-uF1PF2NGGFkxAnXSugzNKB5LjOd689zNCBK5ZnSKr9EVzFuCaFCSDZAH0uI7S5F7Bu8ag8Qsk7wuzbVnWCbEq9t-IKE5yU0qa5qZ_86a3Cbpv5uIeJZ8HucNoBXi-lyjhfBb8Gla3RR2V2Em1MdovfZdD15zl7enuaT8UvmmOYpYxVRpbQiLygnrpC20LL7gnNHhYVCWOZY6ZiQQKku4dGWtGCldaB5l-OOD9H9ce4h-P6cZLa-DU230rCcUM4oU6pz0aPLBR9jgMocQr234cdQYnp-pudnen7mxK_L3B0zNQD8-zWXgnDOfwHevGxh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2501321288</pqid></control><display><type>magazinearticle</type><title>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</title><source>IEEE Electronic Library (IEL)</source><creator>Bruggenwirth, Stefan ; Wagner, Simon ; Bieker, Tanja ; Battisti, Nicola ; Rispoli, Vincenzo ; Greco, Mario ; Pinelli, Gianpaolo ; Cataldo, Davide ; Martorella, Marco</creator><creatorcontrib>Bruggenwirth, Stefan ; Wagner, Simon ; Bieker, Tanja ; Battisti, Nicola ; Rispoli, Vincenzo ; Greco, Mario ; Pinelli, Gianpaolo ; Cataldo, Davide ; Martorella, Marco</creatorcontrib><description>We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.</description><identifier>ISSN: 0885-8985</identifier><identifier>EISSN: 1557-959X</identifier><identifier>DOI: 10.1109/MAES.2020.3039849</identifier><identifier>CODEN: IESMEA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Airborne radar ; Airborne sensing ; Algorithms ; Apodization ; Bandwidth ; Compressed sensing ; Inverse synthetic aperture radar ; Radar ; Radar imaging ; Radar signal processing ; Radar targets ; Research and development ; Signal processing ; Signal processing algorithms ; Superresolution ; Target recognition</subject><ispartof>IEEE aerospace and electronic systems magazine, 2021-03, Vol.36 (3), p.24-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</citedby><cites>FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9374033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9374033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bruggenwirth, Stefan</creatorcontrib><creatorcontrib>Wagner, Simon</creatorcontrib><creatorcontrib>Bieker, Tanja</creatorcontrib><creatorcontrib>Battisti, Nicola</creatorcontrib><creatorcontrib>Rispoli, Vincenzo</creatorcontrib><creatorcontrib>Greco, Mario</creatorcontrib><creatorcontrib>Pinelli, Gianpaolo</creatorcontrib><creatorcontrib>Cataldo, Davide</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><title>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</title><title>IEEE aerospace and electronic systems magazine</title><addtitle>AES-M</addtitle><description>We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.</description><subject>Airborne radar</subject><subject>Airborne sensing</subject><subject>Algorithms</subject><subject>Apodization</subject><subject>Bandwidth</subject><subject>Compressed sensing</subject><subject>Inverse synthetic aperture radar</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Radar signal processing</subject><subject>Radar targets</subject><subject>Research and development</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Superresolution</subject><subject>Target recognition</subject><issn>0885-8985</issn><issn>1557-959X</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2021</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_Na0yyLKXVgmJpK7oLmcwdO6Wd1CSz8N87Y4urC-eecx8fQreUjCgl-uF1PF2NGGFkxAnXSugzNKB5LjOd689zNCBK5ZnSKr9EVzFuCaFCSDZAH0uI7S5F7Bu8ag8Qsk7wuzbVnWCbEq9t-IKE5yU0qa5qZ_86a3Cbpv5uIeJZ8HucNoBXi-lyjhfBb8Gla3RR2V2Em1MdovfZdD15zl7enuaT8UvmmOYpYxVRpbQiLygnrpC20LL7gnNHhYVCWOZY6ZiQQKku4dGWtGCldaB5l-OOD9H9ce4h-P6cZLa-DU230rCcUM4oU6pz0aPLBR9jgMocQr234cdQYnp-pudnen7mxK_L3B0zNQD8-zWXgnDOfwHevGxh</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bruggenwirth, Stefan</creator><creator>Wagner, Simon</creator><creator>Bieker, Tanja</creator><creator>Battisti, Nicola</creator><creator>Rispoli, Vincenzo</creator><creator>Greco, Mario</creator><creator>Pinelli, Gianpaolo</creator><creator>Cataldo, Davide</creator><creator>Martorella, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210301</creationdate><title>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</title><author>Bruggenwirth, Stefan ; Wagner, Simon ; Bieker, Tanja ; Battisti, Nicola ; Rispoli, Vincenzo ; Greco, Mario ; Pinelli, Gianpaolo ; Cataldo, Davide ; Martorella, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne radar</topic><topic>Airborne sensing</topic><topic>Algorithms</topic><topic>Apodization</topic><topic>Bandwidth</topic><topic>Compressed sensing</topic><topic>Inverse synthetic aperture radar</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Radar signal processing</topic><topic>Radar targets</topic><topic>Research and development</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Superresolution</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Bruggenwirth, Stefan</creatorcontrib><creatorcontrib>Wagner, Simon</creatorcontrib><creatorcontrib>Bieker, Tanja</creatorcontrib><creatorcontrib>Battisti, Nicola</creatorcontrib><creatorcontrib>Rispoli, Vincenzo</creatorcontrib><creatorcontrib>Greco, Mario</creatorcontrib><creatorcontrib>Pinelli, Gianpaolo</creatorcontrib><creatorcontrib>Cataldo, Davide</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE aerospace and electronic systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bruggenwirth, Stefan</au><au>Wagner, Simon</au><au>Bieker, Tanja</au><au>Battisti, Nicola</au><au>Rispoli, Vincenzo</au><au>Greco, Mario</au><au>Pinelli, Gianpaolo</au><au>Cataldo, Davide</au><au>Martorella, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</atitle><jtitle>IEEE aerospace and electronic systems magazine</jtitle><stitle>AES-M</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>24</spage><epage>35</epage><pages>24-35</pages><issn>0885-8985</issn><eissn>1557-959X</eissn><coden>IESMEA</coden><abstract>We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MAES.2020.3039849</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8985 |
ispartof | IEEE aerospace and electronic systems magazine, 2021-03, Vol.36 (3), p.24-35 |
issn | 0885-8985 1557-959X |
language | eng |
recordid | cdi_ieee_primary_9374033 |
source | IEEE Electronic Library (IEL) |
subjects | Airborne radar Airborne sensing Algorithms Apodization Bandwidth Compressed sensing Inverse synthetic aperture radar Radar Radar imaging Radar signal processing Radar targets Research and development Signal processing Signal processing algorithms Superresolution Target recognition |
title | Results on Super-Resolution and Target Identification Techniques From the SPERI Project |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Results%20on%20Super-Resolution%20and%20Target%20Identification%20Techniques%20From%20the%20SPERI%20Project&rft.jtitle=IEEE%20aerospace%20and%20electronic%20systems%20magazine&rft.au=Bruggenwirth,%20Stefan&rft.date=2021-03-01&rft.volume=36&rft.issue=3&rft.spage=24&rft.epage=35&rft.pages=24-35&rft.issn=0885-8985&rft.eissn=1557-959X&rft.coden=IESMEA&rft_id=info:doi/10.1109/MAES.2020.3039849&rft_dat=%3Cproquest_RIE%3E2501321288%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501321288&rft_id=info:pmid/&rft_ieee_id=9374033&rfr_iscdi=true |