Results on Super-Resolution and Target Identification Techniques From the SPERI Project

We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE aerospace and electronic systems magazine 2021-03, Vol.36 (3), p.24-35
Hauptverfasser: Bruggenwirth, Stefan, Wagner, Simon, Bieker, Tanja, Battisti, Nicola, Rispoli, Vincenzo, Greco, Mario, Pinelli, Gianpaolo, Cataldo, Davide, Martorella, Marco
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 3
container_start_page 24
container_title IEEE aerospace and electronic systems magazine
container_volume 36
creator Bruggenwirth, Stefan
Wagner, Simon
Bieker, Tanja
Battisti, Nicola
Rispoli, Vincenzo
Greco, Mario
Pinelli, Gianpaolo
Cataldo, Davide
Martorella, Marco
description We give an overview of the EDA CAT B R&D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.
doi_str_mv 10.1109/MAES.2020.3039849
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9374033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9374033</ieee_id><sourcerecordid>2501321288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_Na0yyLKXVgmJpK7oLmcwdO6Wd1CSz8N87Y4urC-eecx8fQreUjCgl-uF1PF2NGGFkxAnXSugzNKB5LjOd689zNCBK5ZnSKr9EVzFuCaFCSDZAH0uI7S5F7Bu8ag8Qsk7wuzbVnWCbEq9t-IKE5yU0qa5qZ_86a3Cbpv5uIeJZ8HucNoBXi-lyjhfBb8Gla3RR2V2Em1MdovfZdD15zl7enuaT8UvmmOYpYxVRpbQiLygnrpC20LL7gnNHhYVCWOZY6ZiQQKku4dGWtGCldaB5l-OOD9H9ce4h-P6cZLa-DU230rCcUM4oU6pz0aPLBR9jgMocQr234cdQYnp-pudnen7mxK_L3B0zNQD8-zWXgnDOfwHevGxh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2501321288</pqid></control><display><type>magazinearticle</type><title>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</title><source>IEEE Electronic Library (IEL)</source><creator>Bruggenwirth, Stefan ; Wagner, Simon ; Bieker, Tanja ; Battisti, Nicola ; Rispoli, Vincenzo ; Greco, Mario ; Pinelli, Gianpaolo ; Cataldo, Davide ; Martorella, Marco</creator><creatorcontrib>Bruggenwirth, Stefan ; Wagner, Simon ; Bieker, Tanja ; Battisti, Nicola ; Rispoli, Vincenzo ; Greco, Mario ; Pinelli, Gianpaolo ; Cataldo, Davide ; Martorella, Marco</creatorcontrib><description>We give an overview of the EDA CAT B R&amp;D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.</description><identifier>ISSN: 0885-8985</identifier><identifier>EISSN: 1557-959X</identifier><identifier>DOI: 10.1109/MAES.2020.3039849</identifier><identifier>CODEN: IESMEA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Airborne radar ; Airborne sensing ; Algorithms ; Apodization ; Bandwidth ; Compressed sensing ; Inverse synthetic aperture radar ; Radar ; Radar imaging ; Radar signal processing ; Radar targets ; Research and development ; Signal processing ; Signal processing algorithms ; Superresolution ; Target recognition</subject><ispartof>IEEE aerospace and electronic systems magazine, 2021-03, Vol.36 (3), p.24-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</citedby><cites>FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9374033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9374033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bruggenwirth, Stefan</creatorcontrib><creatorcontrib>Wagner, Simon</creatorcontrib><creatorcontrib>Bieker, Tanja</creatorcontrib><creatorcontrib>Battisti, Nicola</creatorcontrib><creatorcontrib>Rispoli, Vincenzo</creatorcontrib><creatorcontrib>Greco, Mario</creatorcontrib><creatorcontrib>Pinelli, Gianpaolo</creatorcontrib><creatorcontrib>Cataldo, Davide</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><title>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</title><title>IEEE aerospace and electronic systems magazine</title><addtitle>AES-M</addtitle><description>We give an overview of the EDA CAT B R&amp;D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.</description><subject>Airborne radar</subject><subject>Airborne sensing</subject><subject>Algorithms</subject><subject>Apodization</subject><subject>Bandwidth</subject><subject>Compressed sensing</subject><subject>Inverse synthetic aperture radar</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Radar signal processing</subject><subject>Radar targets</subject><subject>Research and development</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Superresolution</subject><subject>Target recognition</subject><issn>0885-8985</issn><issn>1557-959X</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2021</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_Na0yyLKXVgmJpK7oLmcwdO6Wd1CSz8N87Y4urC-eecx8fQreUjCgl-uF1PF2NGGFkxAnXSugzNKB5LjOd689zNCBK5ZnSKr9EVzFuCaFCSDZAH0uI7S5F7Bu8ag8Qsk7wuzbVnWCbEq9t-IKE5yU0qa5qZ_86a3Cbpv5uIeJZ8HucNoBXi-lyjhfBb8Gla3RR2V2Em1MdovfZdD15zl7enuaT8UvmmOYpYxVRpbQiLygnrpC20LL7gnNHhYVCWOZY6ZiQQKku4dGWtGCldaB5l-OOD9H9ce4h-P6cZLa-DU230rCcUM4oU6pz0aPLBR9jgMocQr234cdQYnp-pudnen7mxK_L3B0zNQD8-zWXgnDOfwHevGxh</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bruggenwirth, Stefan</creator><creator>Wagner, Simon</creator><creator>Bieker, Tanja</creator><creator>Battisti, Nicola</creator><creator>Rispoli, Vincenzo</creator><creator>Greco, Mario</creator><creator>Pinelli, Gianpaolo</creator><creator>Cataldo, Davide</creator><creator>Martorella, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210301</creationdate><title>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</title><author>Bruggenwirth, Stefan ; Wagner, Simon ; Bieker, Tanja ; Battisti, Nicola ; Rispoli, Vincenzo ; Greco, Mario ; Pinelli, Gianpaolo ; Cataldo, Davide ; Martorella, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2f08d7a45b130cb7ab9720233c14aeb4a2c2dc247e119de6ad1b2dace938d73c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne radar</topic><topic>Airborne sensing</topic><topic>Algorithms</topic><topic>Apodization</topic><topic>Bandwidth</topic><topic>Compressed sensing</topic><topic>Inverse synthetic aperture radar</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Radar signal processing</topic><topic>Radar targets</topic><topic>Research and development</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Superresolution</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Bruggenwirth, Stefan</creatorcontrib><creatorcontrib>Wagner, Simon</creatorcontrib><creatorcontrib>Bieker, Tanja</creatorcontrib><creatorcontrib>Battisti, Nicola</creatorcontrib><creatorcontrib>Rispoli, Vincenzo</creatorcontrib><creatorcontrib>Greco, Mario</creatorcontrib><creatorcontrib>Pinelli, Gianpaolo</creatorcontrib><creatorcontrib>Cataldo, Davide</creatorcontrib><creatorcontrib>Martorella, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE aerospace and electronic systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bruggenwirth, Stefan</au><au>Wagner, Simon</au><au>Bieker, Tanja</au><au>Battisti, Nicola</au><au>Rispoli, Vincenzo</au><au>Greco, Mario</au><au>Pinelli, Gianpaolo</au><au>Cataldo, Davide</au><au>Martorella, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Results on Super-Resolution and Target Identification Techniques From the SPERI Project</atitle><jtitle>IEEE aerospace and electronic systems magazine</jtitle><stitle>AES-M</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>24</spage><epage>35</epage><pages>24-35</pages><issn>0885-8985</issn><eissn>1557-959X</eissn><coden>IESMEA</coden><abstract>We give an overview of the EDA CAT B R&amp;D project "Signal Processing for Enhanced Radar Imaging" (SPERI). In this project, the benefits of applying two super-resolution methods Super Spatially Variant Apodization (SSVA) and Compressed Sensing (CS) to two-dimensional Inverse Synthetic Aperture Radar (ISAR) images of airborne radar targets were investigated with respect to the improvements in automatic target identification rates. The algorithms have been tested over a database of more than 1200 real radar images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MAES.2020.3039849</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8985
ispartof IEEE aerospace and electronic systems magazine, 2021-03, Vol.36 (3), p.24-35
issn 0885-8985
1557-959X
language eng
recordid cdi_ieee_primary_9374033
source IEEE Electronic Library (IEL)
subjects Airborne radar
Airborne sensing
Algorithms
Apodization
Bandwidth
Compressed sensing
Inverse synthetic aperture radar
Radar
Radar imaging
Radar signal processing
Radar targets
Research and development
Signal processing
Signal processing algorithms
Superresolution
Target recognition
title Results on Super-Resolution and Target Identification Techniques From the SPERI Project
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Results%20on%20Super-Resolution%20and%20Target%20Identification%20Techniques%20From%20the%20SPERI%20Project&rft.jtitle=IEEE%20aerospace%20and%20electronic%20systems%20magazine&rft.au=Bruggenwirth,%20Stefan&rft.date=2021-03-01&rft.volume=36&rft.issue=3&rft.spage=24&rft.epage=35&rft.pages=24-35&rft.issn=0885-8985&rft.eissn=1557-959X&rft.coden=IESMEA&rft_id=info:doi/10.1109/MAES.2020.3039849&rft_dat=%3Cproquest_RIE%3E2501321288%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501321288&rft_id=info:pmid/&rft_ieee_id=9374033&rfr_iscdi=true