Adversarial Binary Mutual Learning for Semi-Supervised Deep Hashing
Hashing is a popular search algorithm for its compact binary representation and efficient Hamming distance calculation. Benefited from the advance of deep learning, deep hashing methods have achieved promising performance. However, those methods usually learn with expensive labeled data but fail to...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2022-08, Vol.33 (8), p.4110-4124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4124 |
---|---|
container_issue | 8 |
container_start_page | 4110 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 33 |
creator | Wang, Guan'An Hu, Qinghao Yang, Yang Cheng, Jian Hou, Zeng-Guang |
description | Hashing is a popular search algorithm for its compact binary representation and efficient Hamming distance calculation. Benefited from the advance of deep learning, deep hashing methods have achieved promising performance. However, those methods usually learn with expensive labeled data but fail to utilize unlabeled data. Furthermore, the traditional pairwise loss used by those methods cannot explicitly force similar/dissimilar pairs to small/large distances. Both weaknesses limit existing methods' performance. To solve the first problem, we propose a novel semi-supervised deep hashing model named adversarial binary mutual learning (ABML). Specifically, our ABML consists of a generative model G_{H} and a discriminative model D_{H} , where D_{H} learns labeled data in a supervised way and G_{H} learns unlabeled data by synthesizing real images. We adopt an adversarial learning (AL) strategy to transfer the knowledge of unlabeled data to D_{H} by making G_{H} and D_{H} mutually learn from each other. To solve the second problem, we propose a novel Weibull cross-entropy loss (WCE) by using the Weibull distribution, which can distinguish tiny differences of distances and explicitly force similar/dissimilar distances as small/large as possible. Thus, the learned features are more discriminative. Finally, by incorporating ABML with WCE loss, our model can acquire more semantic and discriminative features. Extensive experiments on four common data sets (CIFAR-10, large database of handwritten digits (MNIST), ImageNet-10, and NUS-WIDE) and a large-scale data set ImageNet demonstrate that our approach successfully overcomes the two difficulties above and significantly outperforms state-of-the-art hashing methods. |
doi_str_mv | 10.1109/TNNLS.2021.3055834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9372892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9372892</ieee_id><sourcerecordid>2697569598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-2635b8fa1bfd0e99a248e1fc92f7508e03361644cc516a94f391f4f0af7957423</originalsourceid><addsrcrecordid>eNpdkEtPAjEQgBujEYP8AU3MJl68LPa97RHxgQniAUy8NWV3qktgd21ZEv-9RZCDc5mZzDeTyYfQBcF9QrC-nU0m42mfYkr6DAuhGD9CZ5RImlKm1PGhzt47qBfCAseQWEiuT1GHMak45uwMDQfFBnywvrTL5K6srP9OXtp1G7sxWF-V1Ufiap9MYVWm07YBvykDFMk9QJOMbPiMwDk6cXYZoLfPXfT2-DAbjtLx69PzcDBOcybIOqWSiblylsxdgUFrS7kC4nJNXSawAhy_IpLzPBdEWs0d08Rxh63LtMg4ZV10s7vb-PqrhbA2qzLksFzaCuo2GMq1ZkozvEWv_6GLuvVV_M5QqTMhtdAqUnRH5b4OwYMzjS9XUYEh2Gwtm1_LZmvZ7C3Hpav96Xa-guKw8uc0Apc7oASAw1izjCpN2Q9zan6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697569598</pqid></control><display><type>article</type><title>Adversarial Binary Mutual Learning for Semi-Supervised Deep Hashing</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Guan'An ; Hu, Qinghao ; Yang, Yang ; Cheng, Jian ; Hou, Zeng-Guang</creator><creatorcontrib>Wang, Guan'An ; Hu, Qinghao ; Yang, Yang ; Cheng, Jian ; Hou, Zeng-Guang</creatorcontrib><description><![CDATA[Hashing is a popular search algorithm for its compact binary representation and efficient Hamming distance calculation. Benefited from the advance of deep learning, deep hashing methods have achieved promising performance. However, those methods usually learn with expensive labeled data but fail to utilize unlabeled data. Furthermore, the traditional pairwise loss used by those methods cannot explicitly force similar/dissimilar pairs to small/large distances. Both weaknesses limit existing methods' performance. To solve the first problem, we propose a novel semi-supervised deep hashing model named adversarial binary mutual learning (ABML). Specifically, our ABML consists of a generative model <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> and a discriminative model <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> learns labeled data in a supervised way and <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> learns unlabeled data by synthesizing real images. We adopt an adversarial learning (AL) strategy to transfer the knowledge of unlabeled data to <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> by making <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> mutually learn from each other. To solve the second problem, we propose a novel Weibull cross-entropy loss (WCE) by using the Weibull distribution, which can distinguish tiny differences of distances and explicitly force similar/dissimilar distances as small/large as possible. Thus, the learned features are more discriminative. Finally, by incorporating ABML with WCE loss, our model can acquire more semantic and discriminative features. Extensive experiments on four common data sets (CIFAR-10, large database of handwritten digits (MNIST), ImageNet-10, and NUS-WIDE) and a large-scale data set ImageNet demonstrate that our approach successfully overcomes the two difficulties above and significantly outperforms state-of-the-art hashing methods.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3055834</identifier><identifier>PMID: 33684043</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adversarial learning (AL) ; Binary codes ; Computational modeling ; Data models ; Datasets ; Deep learning ; Entropy (Information theory) ; Force ; Handwriting ; Hash functions ; hashing ; Knowledge management ; Learning ; Machine learning ; Search algorithms ; Semantics ; Training data ; Transfer learning ; Weibull distribution</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-08, Vol.33 (8), p.4110-4124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-2635b8fa1bfd0e99a248e1fc92f7508e03361644cc516a94f391f4f0af7957423</citedby><cites>FETCH-LOGICAL-c351t-2635b8fa1bfd0e99a248e1fc92f7508e03361644cc516a94f391f4f0af7957423</cites><orcidid>0000-0002-1534-5840 ; 0000-0003-1289-2758 ; 0000-0001-6015-494X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9372892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9372892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33684043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Guan'An</creatorcontrib><creatorcontrib>Hu, Qinghao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Cheng, Jian</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><title>Adversarial Binary Mutual Learning for Semi-Supervised Deep Hashing</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[Hashing is a popular search algorithm for its compact binary representation and efficient Hamming distance calculation. Benefited from the advance of deep learning, deep hashing methods have achieved promising performance. However, those methods usually learn with expensive labeled data but fail to utilize unlabeled data. Furthermore, the traditional pairwise loss used by those methods cannot explicitly force similar/dissimilar pairs to small/large distances. Both weaknesses limit existing methods' performance. To solve the first problem, we propose a novel semi-supervised deep hashing model named adversarial binary mutual learning (ABML). Specifically, our ABML consists of a generative model <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> and a discriminative model <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> learns labeled data in a supervised way and <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> learns unlabeled data by synthesizing real images. We adopt an adversarial learning (AL) strategy to transfer the knowledge of unlabeled data to <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> by making <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> mutually learn from each other. To solve the second problem, we propose a novel Weibull cross-entropy loss (WCE) by using the Weibull distribution, which can distinguish tiny differences of distances and explicitly force similar/dissimilar distances as small/large as possible. Thus, the learned features are more discriminative. Finally, by incorporating ABML with WCE loss, our model can acquire more semantic and discriminative features. Extensive experiments on four common data sets (CIFAR-10, large database of handwritten digits (MNIST), ImageNet-10, and NUS-WIDE) and a large-scale data set ImageNet demonstrate that our approach successfully overcomes the two difficulties above and significantly outperforms state-of-the-art hashing methods.]]></description><subject>Adversarial learning (AL)</subject><subject>Binary codes</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Entropy (Information theory)</subject><subject>Force</subject><subject>Handwriting</subject><subject>Hash functions</subject><subject>hashing</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Search algorithms</subject><subject>Semantics</subject><subject>Training data</subject><subject>Transfer learning</subject><subject>Weibull distribution</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPAjEQgBujEYP8AU3MJl68LPa97RHxgQniAUy8NWV3qktgd21ZEv-9RZCDc5mZzDeTyYfQBcF9QrC-nU0m42mfYkr6DAuhGD9CZ5RImlKm1PGhzt47qBfCAseQWEiuT1GHMak45uwMDQfFBnywvrTL5K6srP9OXtp1G7sxWF-V1Ufiap9MYVWm07YBvykDFMk9QJOMbPiMwDk6cXYZoLfPXfT2-DAbjtLx69PzcDBOcybIOqWSiblylsxdgUFrS7kC4nJNXSawAhy_IpLzPBdEWs0d08Rxh63LtMg4ZV10s7vb-PqrhbA2qzLksFzaCuo2GMq1ZkozvEWv_6GLuvVV_M5QqTMhtdAqUnRH5b4OwYMzjS9XUYEh2Gwtm1_LZmvZ7C3Hpav96Xa-guKw8uc0Apc7oASAw1izjCpN2Q9zan6Y</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Guan'An</creator><creator>Hu, Qinghao</creator><creator>Yang, Yang</creator><creator>Cheng, Jian</creator><creator>Hou, Zeng-Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid><orcidid>https://orcid.org/0000-0003-1289-2758</orcidid><orcidid>https://orcid.org/0000-0001-6015-494X</orcidid></search><sort><creationdate>20220801</creationdate><title>Adversarial Binary Mutual Learning for Semi-Supervised Deep Hashing</title><author>Wang, Guan'An ; Hu, Qinghao ; Yang, Yang ; Cheng, Jian ; Hou, Zeng-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-2635b8fa1bfd0e99a248e1fc92f7508e03361644cc516a94f391f4f0af7957423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adversarial learning (AL)</topic><topic>Binary codes</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Entropy (Information theory)</topic><topic>Force</topic><topic>Handwriting</topic><topic>Hash functions</topic><topic>hashing</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Search algorithms</topic><topic>Semantics</topic><topic>Training data</topic><topic>Transfer learning</topic><topic>Weibull distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guan'An</creatorcontrib><creatorcontrib>Hu, Qinghao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Cheng, Jian</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Guan'An</au><au>Hu, Qinghao</au><au>Yang, Yang</au><au>Cheng, Jian</au><au>Hou, Zeng-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Binary Mutual Learning for Semi-Supervised Deep Hashing</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>33</volume><issue>8</issue><spage>4110</spage><epage>4124</epage><pages>4110-4124</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[Hashing is a popular search algorithm for its compact binary representation and efficient Hamming distance calculation. Benefited from the advance of deep learning, deep hashing methods have achieved promising performance. However, those methods usually learn with expensive labeled data but fail to utilize unlabeled data. Furthermore, the traditional pairwise loss used by those methods cannot explicitly force similar/dissimilar pairs to small/large distances. Both weaknesses limit existing methods' performance. To solve the first problem, we propose a novel semi-supervised deep hashing model named adversarial binary mutual learning (ABML). Specifically, our ABML consists of a generative model <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> and a discriminative model <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> learns labeled data in a supervised way and <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> learns unlabeled data by synthesizing real images. We adopt an adversarial learning (AL) strategy to transfer the knowledge of unlabeled data to <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> by making <inline-formula> <tex-math notation="LaTeX">G_{H} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">D_{H} </tex-math></inline-formula> mutually learn from each other. To solve the second problem, we propose a novel Weibull cross-entropy loss (WCE) by using the Weibull distribution, which can distinguish tiny differences of distances and explicitly force similar/dissimilar distances as small/large as possible. Thus, the learned features are more discriminative. Finally, by incorporating ABML with WCE loss, our model can acquire more semantic and discriminative features. Extensive experiments on four common data sets (CIFAR-10, large database of handwritten digits (MNIST), ImageNet-10, and NUS-WIDE) and a large-scale data set ImageNet demonstrate that our approach successfully overcomes the two difficulties above and significantly outperforms state-of-the-art hashing methods.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>33684043</pmid><doi>10.1109/TNNLS.2021.3055834</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid><orcidid>https://orcid.org/0000-0003-1289-2758</orcidid><orcidid>https://orcid.org/0000-0001-6015-494X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2022-08, Vol.33 (8), p.4110-4124 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_9372892 |
source | IEEE Electronic Library (IEL) |
subjects | Adversarial learning (AL) Binary codes Computational modeling Data models Datasets Deep learning Entropy (Information theory) Force Handwriting Hash functions hashing Knowledge management Learning Machine learning Search algorithms Semantics Training data Transfer learning Weibull distribution |
title | Adversarial Binary Mutual Learning for Semi-Supervised Deep Hashing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Binary%20Mutual%20Learning%20for%20Semi-Supervised%20Deep%20Hashing&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Guan'An&rft.date=2022-08-01&rft.volume=33&rft.issue=8&rft.spage=4110&rft.epage=4124&rft.pages=4110-4124&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3055834&rft_dat=%3Cproquest_RIE%3E2697569598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697569598&rft_id=info:pmid/33684043&rft_ieee_id=9372892&rfr_iscdi=true |