An Optically Transparent Near-Field Focusing Metasurface

We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2021-04, Vol.69 (4), p.2015-2027
Hauptverfasser: Li, Long, Zhang, Pei, Cheng, Fangjie, Chang, Mingyang, Cui, Tie Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 4
container_start_page 2015
container_title IEEE transactions on microwave theory and techniques
container_volume 69
creator Li, Long
Zhang, Pei
Cheng, Fangjie
Chang, Mingyang
Cui, Tie Jun
description We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping \vert S_{11}\vert less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of 342 \times 342 \times 4.4 mm 3 ( 6.6 \times 6.6 \times 0.08\lambda _{0}^{3} ) with the sheet impedance of 1~\Omega /sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.
doi_str_mv 10.1109/TMTT.2021.3061475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9372807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9372807</ieee_id><sourcerecordid>2509291919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfu7G6yu8dSrAqtvcTzMtlOJCUmcTc59O1NaZE5_Ax8_wx8jD0CXwBw-1Jsi2IhuICF5DkonV2xGWSZTm2u-TWbcQ4mtcrwW3YX42FaVcbNjJllm-z6ofbYNMekCNjGHgO1Q_JJGNJ1Tc0-WXd-jHX7nWxpwDiGCj3ds5sKm0gPl5yzr_VrsXpPN7u3j9Vyk3qpYEi9QajAG6l4ZgANerRky32Z56gFCSkUoaa89PtSSyXJeE0lCkIptTQo5-z5fLcP3e9IcXCHbgzt9NKJjFthYZqJgjPlQxdjoMr1of7BcHTA3UmQOwlyJ0HuImjqPJ07NRH981ZqYbiWfzTsYWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509291919</pqid></control><display><type>article</type><title>An Optically Transparent Near-Field Focusing Metasurface</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Long ; Zhang, Pei ; Cheng, Fangjie ; Chang, Mingyang ; Cui, Tie Jun</creator><creatorcontrib>Li, Long ; Zhang, Pei ; Cheng, Fangjie ; Chang, Mingyang ; Cui, Tie Jun</creatorcontrib><description><![CDATA[We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping <inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert </tex-math></inline-formula> less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of <inline-formula> <tex-math notation="LaTeX">342 \times 342 \times 4.4 </tex-math></inline-formula> mm 3 (<inline-formula> <tex-math notation="LaTeX">6.6 \times 6.6 \times 0.08\lambda _{0}^{3} </tex-math></inline-formula>) with the sheet impedance of <inline-formula> <tex-math notation="LaTeX">1~\Omega </tex-math></inline-formula>/sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3061475</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boolean functions ; Conductors ; Data structures ; Efficiency ; Energy harvesting ; Focusing ; High impedance ; Impedance ; Indium tin oxide ; Indium tin oxide (ITO) ; Indium tin oxides ; Light transmittance ; Metals ; Metasurfaces ; Near fields ; near-field focusing (NNF) ; optically transparent ; Phase shift ; Plane waves ; Position measurement ; Power sources ; Receiving ; reflective metasurface ; Wireless communication ; wireless energy harvesting (WEH) ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on microwave theory and techniques, 2021-04, Vol.69 (4), p.2015-2027</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</citedby><cites>FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</cites><orcidid>0000-0003-0472-7314 ; 0000-0002-5862-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9372807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9372807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Cheng, Fangjie</creatorcontrib><creatorcontrib>Chang, Mingyang</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><title>An Optically Transparent Near-Field Focusing Metasurface</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping <inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert </tex-math></inline-formula> less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of <inline-formula> <tex-math notation="LaTeX">342 \times 342 \times 4.4 </tex-math></inline-formula> mm 3 (<inline-formula> <tex-math notation="LaTeX">6.6 \times 6.6 \times 0.08\lambda _{0}^{3} </tex-math></inline-formula>) with the sheet impedance of <inline-formula> <tex-math notation="LaTeX">1~\Omega </tex-math></inline-formula>/sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.]]></description><subject>Boolean functions</subject><subject>Conductors</subject><subject>Data structures</subject><subject>Efficiency</subject><subject>Energy harvesting</subject><subject>Focusing</subject><subject>High impedance</subject><subject>Impedance</subject><subject>Indium tin oxide</subject><subject>Indium tin oxide (ITO)</subject><subject>Indium tin oxides</subject><subject>Light transmittance</subject><subject>Metals</subject><subject>Metasurfaces</subject><subject>Near fields</subject><subject>near-field focusing (NNF)</subject><subject>optically transparent</subject><subject>Phase shift</subject><subject>Plane waves</subject><subject>Position measurement</subject><subject>Power sources</subject><subject>Receiving</subject><subject>reflective metasurface</subject><subject>Wireless communication</subject><subject>wireless energy harvesting (WEH)</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfu7G6yu8dSrAqtvcTzMtlOJCUmcTc59O1NaZE5_Ax8_wx8jD0CXwBw-1Jsi2IhuICF5DkonV2xGWSZTm2u-TWbcQ4mtcrwW3YX42FaVcbNjJllm-z6ofbYNMekCNjGHgO1Q_JJGNJ1Tc0-WXd-jHX7nWxpwDiGCj3ds5sKm0gPl5yzr_VrsXpPN7u3j9Vyk3qpYEi9QajAG6l4ZgANerRky32Z56gFCSkUoaa89PtSSyXJeE0lCkIptTQo5-z5fLcP3e9IcXCHbgzt9NKJjFthYZqJgjPlQxdjoMr1of7BcHTA3UmQOwlyJ0HuImjqPJ07NRH981ZqYbiWfzTsYWA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Li, Long</creator><creator>Zhang, Pei</creator><creator>Cheng, Fangjie</creator><creator>Chang, Mingyang</creator><creator>Cui, Tie Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0472-7314</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></search><sort><creationdate>20210401</creationdate><title>An Optically Transparent Near-Field Focusing Metasurface</title><author>Li, Long ; Zhang, Pei ; Cheng, Fangjie ; Chang, Mingyang ; Cui, Tie Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boolean functions</topic><topic>Conductors</topic><topic>Data structures</topic><topic>Efficiency</topic><topic>Energy harvesting</topic><topic>Focusing</topic><topic>High impedance</topic><topic>Impedance</topic><topic>Indium tin oxide</topic><topic>Indium tin oxide (ITO)</topic><topic>Indium tin oxides</topic><topic>Light transmittance</topic><topic>Metals</topic><topic>Metasurfaces</topic><topic>Near fields</topic><topic>near-field focusing (NNF)</topic><topic>optically transparent</topic><topic>Phase shift</topic><topic>Plane waves</topic><topic>Position measurement</topic><topic>Power sources</topic><topic>Receiving</topic><topic>reflective metasurface</topic><topic>Wireless communication</topic><topic>wireless energy harvesting (WEH)</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Cheng, Fangjie</creatorcontrib><creatorcontrib>Chang, Mingyang</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Long</au><au>Zhang, Pei</au><au>Cheng, Fangjie</au><au>Chang, Mingyang</au><au>Cui, Tie Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optically Transparent Near-Field Focusing Metasurface</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>69</volume><issue>4</issue><spage>2015</spage><epage>2027</epage><pages>2015-2027</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping <inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert </tex-math></inline-formula> less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of <inline-formula> <tex-math notation="LaTeX">342 \times 342 \times 4.4 </tex-math></inline-formula> mm 3 (<inline-formula> <tex-math notation="LaTeX">6.6 \times 6.6 \times 0.08\lambda _{0}^{3} </tex-math></inline-formula>) with the sheet impedance of <inline-formula> <tex-math notation="LaTeX">1~\Omega </tex-math></inline-formula>/sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3061475</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0472-7314</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2021-04, Vol.69 (4), p.2015-2027
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_9372807
source IEEE Electronic Library (IEL)
subjects Boolean functions
Conductors
Data structures
Efficiency
Energy harvesting
Focusing
High impedance
Impedance
Indium tin oxide
Indium tin oxide (ITO)
Indium tin oxides
Light transmittance
Metals
Metasurfaces
Near fields
near-field focusing (NNF)
optically transparent
Phase shift
Plane waves
Position measurement
Power sources
Receiving
reflective metasurface
Wireless communication
wireless energy harvesting (WEH)
wireless power transfer (WPT)
Wireless power transmission
title An Optically Transparent Near-Field Focusing Metasurface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optically%20Transparent%20Near-Field%20Focusing%20Metasurface&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Li,%20Long&rft.date=2021-04-01&rft.volume=69&rft.issue=4&rft.spage=2015&rft.epage=2027&rft.pages=2015-2027&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3061475&rft_dat=%3Cproquest_RIE%3E2509291919%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509291919&rft_id=info:pmid/&rft_ieee_id=9372807&rfr_iscdi=true