An Optically Transparent Near-Field Focusing Metasurface
We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting appli...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2021-04, Vol.69 (4), p.2015-2027 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2027 |
---|---|
container_issue | 4 |
container_start_page | 2015 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 69 |
creator | Li, Long Zhang, Pei Cheng, Fangjie Chang, Mingyang Cui, Tie Jun |
description | We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping \vert S_{11}\vert less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of 342 \times 342 \times 4.4 mm 3 ( 6.6 \times 6.6 \times 0.08\lambda _{0}^{3} ) with the sheet impedance of 1~\Omega /sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work. |
doi_str_mv | 10.1109/TMTT.2021.3061475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9372807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9372807</ieee_id><sourcerecordid>2509291919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfu7G6yu8dSrAqtvcTzMtlOJCUmcTc59O1NaZE5_Ax8_wx8jD0CXwBw-1Jsi2IhuICF5DkonV2xGWSZTm2u-TWbcQ4mtcrwW3YX42FaVcbNjJllm-z6ofbYNMekCNjGHgO1Q_JJGNJ1Tc0-WXd-jHX7nWxpwDiGCj3ds5sKm0gPl5yzr_VrsXpPN7u3j9Vyk3qpYEi9QajAG6l4ZgANerRky32Z56gFCSkUoaa89PtSSyXJeE0lCkIptTQo5-z5fLcP3e9IcXCHbgzt9NKJjFthYZqJgjPlQxdjoMr1of7BcHTA3UmQOwlyJ0HuImjqPJ07NRH981ZqYbiWfzTsYWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509291919</pqid></control><display><type>article</type><title>An Optically Transparent Near-Field Focusing Metasurface</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Long ; Zhang, Pei ; Cheng, Fangjie ; Chang, Mingyang ; Cui, Tie Jun</creator><creatorcontrib>Li, Long ; Zhang, Pei ; Cheng, Fangjie ; Chang, Mingyang ; Cui, Tie Jun</creatorcontrib><description><![CDATA[We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping <inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert </tex-math></inline-formula> less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of <inline-formula> <tex-math notation="LaTeX">342 \times 342 \times 4.4 </tex-math></inline-formula> mm 3 (<inline-formula> <tex-math notation="LaTeX">6.6 \times 6.6 \times 0.08\lambda _{0}^{3} </tex-math></inline-formula>) with the sheet impedance of <inline-formula> <tex-math notation="LaTeX">1~\Omega </tex-math></inline-formula>/sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3061475</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boolean functions ; Conductors ; Data structures ; Efficiency ; Energy harvesting ; Focusing ; High impedance ; Impedance ; Indium tin oxide ; Indium tin oxide (ITO) ; Indium tin oxides ; Light transmittance ; Metals ; Metasurfaces ; Near fields ; near-field focusing (NNF) ; optically transparent ; Phase shift ; Plane waves ; Position measurement ; Power sources ; Receiving ; reflective metasurface ; Wireless communication ; wireless energy harvesting (WEH) ; wireless power transfer (WPT) ; Wireless power transmission</subject><ispartof>IEEE transactions on microwave theory and techniques, 2021-04, Vol.69 (4), p.2015-2027</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</citedby><cites>FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</cites><orcidid>0000-0003-0472-7314 ; 0000-0002-5862-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9372807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9372807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Cheng, Fangjie</creatorcontrib><creatorcontrib>Chang, Mingyang</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><title>An Optically Transparent Near-Field Focusing Metasurface</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping <inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert </tex-math></inline-formula> less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of <inline-formula> <tex-math notation="LaTeX">342 \times 342 \times 4.4 </tex-math></inline-formula> mm 3 (<inline-formula> <tex-math notation="LaTeX">6.6 \times 6.6 \times 0.08\lambda _{0}^{3} </tex-math></inline-formula>) with the sheet impedance of <inline-formula> <tex-math notation="LaTeX">1~\Omega </tex-math></inline-formula>/sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.]]></description><subject>Boolean functions</subject><subject>Conductors</subject><subject>Data structures</subject><subject>Efficiency</subject><subject>Energy harvesting</subject><subject>Focusing</subject><subject>High impedance</subject><subject>Impedance</subject><subject>Indium tin oxide</subject><subject>Indium tin oxide (ITO)</subject><subject>Indium tin oxides</subject><subject>Light transmittance</subject><subject>Metals</subject><subject>Metasurfaces</subject><subject>Near fields</subject><subject>near-field focusing (NNF)</subject><subject>optically transparent</subject><subject>Phase shift</subject><subject>Plane waves</subject><subject>Position measurement</subject><subject>Power sources</subject><subject>Receiving</subject><subject>reflective metasurface</subject><subject>Wireless communication</subject><subject>wireless energy harvesting (WEH)</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwEPKfu7G6yu8dSrAqtvcTzMtlOJCUmcTc59O1NaZE5_Ax8_wx8jD0CXwBw-1Jsi2IhuICF5DkonV2xGWSZTm2u-TWbcQ4mtcrwW3YX42FaVcbNjJllm-z6ofbYNMekCNjGHgO1Q_JJGNJ1Tc0-WXd-jHX7nWxpwDiGCj3ds5sKm0gPl5yzr_VrsXpPN7u3j9Vyk3qpYEi9QajAG6l4ZgANerRky32Z56gFCSkUoaa89PtSSyXJeE0lCkIptTQo5-z5fLcP3e9IcXCHbgzt9NKJjFthYZqJgjPlQxdjoMr1of7BcHTA3UmQOwlyJ0HuImjqPJ07NRH981ZqYbiWfzTsYWA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Li, Long</creator><creator>Zhang, Pei</creator><creator>Cheng, Fangjie</creator><creator>Chang, Mingyang</creator><creator>Cui, Tie Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0472-7314</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></search><sort><creationdate>20210401</creationdate><title>An Optically Transparent Near-Field Focusing Metasurface</title><author>Li, Long ; Zhang, Pei ; Cheng, Fangjie ; Chang, Mingyang ; Cui, Tie Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c8a1f1c8340581a8aca9e9bdb66a72e2324ea7e6bcdb7343e8c7eba2ea33738a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boolean functions</topic><topic>Conductors</topic><topic>Data structures</topic><topic>Efficiency</topic><topic>Energy harvesting</topic><topic>Focusing</topic><topic>High impedance</topic><topic>Impedance</topic><topic>Indium tin oxide</topic><topic>Indium tin oxide (ITO)</topic><topic>Indium tin oxides</topic><topic>Light transmittance</topic><topic>Metals</topic><topic>Metasurfaces</topic><topic>Near fields</topic><topic>near-field focusing (NNF)</topic><topic>optically transparent</topic><topic>Phase shift</topic><topic>Plane waves</topic><topic>Position measurement</topic><topic>Power sources</topic><topic>Receiving</topic><topic>reflective metasurface</topic><topic>Wireless communication</topic><topic>wireless energy harvesting (WEH)</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Long</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Cheng, Fangjie</creatorcontrib><creatorcontrib>Chang, Mingyang</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Long</au><au>Zhang, Pei</au><au>Cheng, Fangjie</au><au>Chang, Mingyang</au><au>Cui, Tie Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optically Transparent Near-Field Focusing Metasurface</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>69</volume><issue>4</issue><spage>2015</spage><epage>2027</epage><pages>2015-2027</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[We propose a novel optically transparent reflection-type metasurface based on indium tin oxide (ITO) material for simultaneously achieving high transmission of visible light and near-field focusing (NNF) of microwave, demonstrating its potential for wireless power transfer (WPT) and harvesting applications. By achieving high impedance of the metasurface, this work overcomes the main challenge in designing metasurface with lossy metal materials, i.e., optimizing the tradeoff between phase shift characteristics and efficiency loss. We propose a new element with two degrees of freedom to ensure that the phase shift range can reach 350° while keeping <inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert </tex-math></inline-formula> less than −2.5 dB. In addition, we adopt the grid ground (GND) instead of the complete GND plane to further improve the light transmittance. Based on the above considerations, we design two types of metasurfaces for deployments in ambient wireless energy harvesting (plane-wave feeding) and WPT (horn feeding), respectively. Its NNF transfer efficiency can reach more than 60% of the metasurface based on good conductor materials. The relative bandwidth with 50% transfer efficiency can reach 34.5% (4.9-6.9 GHz). We fabricate an ITO-based prototype of the metasurface with the dimension of <inline-formula> <tex-math notation="LaTeX">342 \times 342 \times 4.4 </tex-math></inline-formula> mm 3 (<inline-formula> <tex-math notation="LaTeX">6.6 \times 6.6 \times 0.08\lambda _{0}^{3} </tex-math></inline-formula>) with the sheet impedance of <inline-formula> <tex-math notation="LaTeX">1~\Omega </tex-math></inline-formula>/sq and a light transmittance of 60%. We also perform near-field scanning measurements to verify that the focusing position is accurate. Finally, through WPT and harvesting tests, we achieve a WPT and receiving efficiency (from power source to receiving antenna) of 12.6% and a rectification efficiency of 55%, confirming the practicability and effectiveness of the proposed work.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3061475</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0472-7314</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2021-04, Vol.69 (4), p.2015-2027 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_9372807 |
source | IEEE Electronic Library (IEL) |
subjects | Boolean functions Conductors Data structures Efficiency Energy harvesting Focusing High impedance Impedance Indium tin oxide Indium tin oxide (ITO) Indium tin oxides Light transmittance Metals Metasurfaces Near fields near-field focusing (NNF) optically transparent Phase shift Plane waves Position measurement Power sources Receiving reflective metasurface Wireless communication wireless energy harvesting (WEH) wireless power transfer (WPT) Wireless power transmission |
title | An Optically Transparent Near-Field Focusing Metasurface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optically%20Transparent%20Near-Field%20Focusing%20Metasurface&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Li,%20Long&rft.date=2021-04-01&rft.volume=69&rft.issue=4&rft.spage=2015&rft.epage=2027&rft.pages=2015-2027&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3061475&rft_dat=%3Cproquest_RIE%3E2509291919%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509291919&rft_id=info:pmid/&rft_ieee_id=9372807&rfr_iscdi=true |