Bounded-Input Bounded-Output Stability Tests for Two-Dimensional Continuous-Time Systems
This paper presents two efficient algorithms to determine whether a bivariate polynomial, possibly with complex coefficients, does not vanish in the cross product of two closed right-half planes (is "2-C stable"). A 2-C stable polynomial in the denominator of a two-dimensional analog filte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-05, Vol.68 (5), p.2134-2147 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2147 |
---|---|
container_issue | 5 |
container_start_page | 2134 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 68 |
creator | Bistritz, Yuval |
description | This paper presents two efficient algorithms to determine whether a bivariate polynomial, possibly with complex coefficients, does not vanish in the cross product of two closed right-half planes (is "2-C stable"). A 2-C stable polynomial in the denominator of a two-dimensional analog filter has been proved (not long ago) to imply bounded-input bounded-output (BIBO) stability. The two algorithms are entirely different but both rely on a recently proposed fraction-free (FF) Routh test for complex polynomials in this transaction. The first algorithm tests the 2-C stability of a bivariate polynomial of degree (n_{1},n_{2}) in order n^{6} of elementary operations (when n_{1}=n_{2}=n ). It is a "tabular type" two-dimensional stability test that can be regarded as a "Routh table" whose scalar entries were replaced by univariate polynomials. The second 2-C stability test is obtained from the first by its telepolation. It carries out the 2-C stability test by a finite collection of FF Routh tests and requires only order n^{4} elementary operations. Both algorithms possess an integer-preserving property that enhances them with additional merits including numerical error-free decision on 2-C stability. |
doi_str_mv | 10.1109/TCSI.2021.3059839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9369853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9369853</ieee_id><sourcerecordid>2515853619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a46ceea74dd4606a07771c4c83591fd65af4a6d19231b67df4d6820fde125d3f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKc_QLwpeJ2ZN2nS5FLr1MFgF6vgXciaBDq2ZjYpsn9vy6ZX7wfnHA4PQvdAZgBEPVXlejGjhMKMEa4kUxdoApxLTCQRl-OeKywZldfoJsYtIVQRBhP09RL61jqLF-2hT9nfterTeK6T2TS7Jh2zysUUMx-6rPoJ-LXZuzY2oTW7rAxtato-9BFXwztbH2Ny-3iLrrzZRXd3nlP0-Tavyg-8XL0vyuclrqliCZtc1M6ZIrc2F0QYUhQF1HktGVfgreDG50ZYUJTBRhTW51ZISrx1QLllnk3R4yn30IXvfmipt6HvhmJRUw5cciZADSo4qeouxNg5rw9dszfdUQPRI0A9AtQjQH0GOHgeTp7GOfevV0yoIZT9AqmSbRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515853619</pqid></control><display><type>article</type><title>Bounded-Input Bounded-Output Stability Tests for Two-Dimensional Continuous-Time Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Bistritz, Yuval</creator><creatorcontrib>Bistritz, Yuval</creatorcontrib><description><![CDATA[This paper presents two efficient algorithms to determine whether a bivariate polynomial, possibly with complex coefficients, does not vanish in the cross product of two closed right-half planes (is "2-C stable"). A 2-C stable polynomial in the denominator of a two-dimensional analog filter has been proved (not long ago) to imply bounded-input bounded-output (BIBO) stability. The two algorithms are entirely different but both rely on a recently proposed fraction-free (FF) Routh test for complex polynomials in this transaction. The first algorithm tests the 2-C stability of a bivariate polynomial of degree <inline-formula> <tex-math notation="LaTeX">(n_{1},n_{2}) </tex-math></inline-formula> in order <inline-formula> <tex-math notation="LaTeX">n^{6} </tex-math></inline-formula> of elementary operations (when <inline-formula> <tex-math notation="LaTeX">n_{1}=n_{2}=n </tex-math></inline-formula>). It is a "tabular type" two-dimensional stability test that can be regarded as a "Routh table" whose scalar entries were replaced by univariate polynomials. The second 2-C stability test is obtained from the first by its telepolation. It carries out the 2-C stability test by a finite collection of FF Routh tests and requires only order <inline-formula> <tex-math notation="LaTeX">n^{4} </tex-math></inline-formula> elementary operations. Both algorithms possess an integer-preserving property that enhances them with additional merits including numerical error-free decision on 2-C stability.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2021.3059839</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analogue filters ; Bivariate analysis ; bivariate polynomials ; Circuit stability ; Complexity theory ; Continuous time systems ; Dimensional stability ; Half planes ; integer algorithms ; Linear systems ; Numerical stability ; Polynomials ; Routh test ; Stability criteria ; Stability tests ; Testing ; Two dimensional displays ; Two-dimensions stability ; very strict Hurwitz polynomials</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-05, Vol.68 (5), p.2134-2147</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a46ceea74dd4606a07771c4c83591fd65af4a6d19231b67df4d6820fde125d3f3</citedby><cites>FETCH-LOGICAL-c293t-a46ceea74dd4606a07771c4c83591fd65af4a6d19231b67df4d6820fde125d3f3</cites><orcidid>0000-0003-0120-4219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9369853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9369853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bistritz, Yuval</creatorcontrib><title>Bounded-Input Bounded-Output Stability Tests for Two-Dimensional Continuous-Time Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[This paper presents two efficient algorithms to determine whether a bivariate polynomial, possibly with complex coefficients, does not vanish in the cross product of two closed right-half planes (is "2-C stable"). A 2-C stable polynomial in the denominator of a two-dimensional analog filter has been proved (not long ago) to imply bounded-input bounded-output (BIBO) stability. The two algorithms are entirely different but both rely on a recently proposed fraction-free (FF) Routh test for complex polynomials in this transaction. The first algorithm tests the 2-C stability of a bivariate polynomial of degree <inline-formula> <tex-math notation="LaTeX">(n_{1},n_{2}) </tex-math></inline-formula> in order <inline-formula> <tex-math notation="LaTeX">n^{6} </tex-math></inline-formula> of elementary operations (when <inline-formula> <tex-math notation="LaTeX">n_{1}=n_{2}=n </tex-math></inline-formula>). It is a "tabular type" two-dimensional stability test that can be regarded as a "Routh table" whose scalar entries were replaced by univariate polynomials. The second 2-C stability test is obtained from the first by its telepolation. It carries out the 2-C stability test by a finite collection of FF Routh tests and requires only order <inline-formula> <tex-math notation="LaTeX">n^{4} </tex-math></inline-formula> elementary operations. Both algorithms possess an integer-preserving property that enhances them with additional merits including numerical error-free decision on 2-C stability.]]></description><subject>Algorithms</subject><subject>Analogue filters</subject><subject>Bivariate analysis</subject><subject>bivariate polynomials</subject><subject>Circuit stability</subject><subject>Complexity theory</subject><subject>Continuous time systems</subject><subject>Dimensional stability</subject><subject>Half planes</subject><subject>integer algorithms</subject><subject>Linear systems</subject><subject>Numerical stability</subject><subject>Polynomials</subject><subject>Routh test</subject><subject>Stability criteria</subject><subject>Stability tests</subject><subject>Testing</subject><subject>Two dimensional displays</subject><subject>Two-dimensions stability</subject><subject>very strict Hurwitz polynomials</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKc_QLwpeJ2ZN2nS5FLr1MFgF6vgXciaBDq2ZjYpsn9vy6ZX7wfnHA4PQvdAZgBEPVXlejGjhMKMEa4kUxdoApxLTCQRl-OeKywZldfoJsYtIVQRBhP09RL61jqLF-2hT9nfterTeK6T2TS7Jh2zysUUMx-6rPoJ-LXZuzY2oTW7rAxtato-9BFXwztbH2Ny-3iLrrzZRXd3nlP0-Tavyg-8XL0vyuclrqliCZtc1M6ZIrc2F0QYUhQF1HktGVfgreDG50ZYUJTBRhTW51ZISrx1QLllnk3R4yn30IXvfmipt6HvhmJRUw5cciZADSo4qeouxNg5rw9dszfdUQPRI0A9AtQjQH0GOHgeTp7GOfevV0yoIZT9AqmSbRs</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Bistritz, Yuval</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid></search><sort><creationdate>20210501</creationdate><title>Bounded-Input Bounded-Output Stability Tests for Two-Dimensional Continuous-Time Systems</title><author>Bistritz, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a46ceea74dd4606a07771c4c83591fd65af4a6d19231b67df4d6820fde125d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analogue filters</topic><topic>Bivariate analysis</topic><topic>bivariate polynomials</topic><topic>Circuit stability</topic><topic>Complexity theory</topic><topic>Continuous time systems</topic><topic>Dimensional stability</topic><topic>Half planes</topic><topic>integer algorithms</topic><topic>Linear systems</topic><topic>Numerical stability</topic><topic>Polynomials</topic><topic>Routh test</topic><topic>Stability criteria</topic><topic>Stability tests</topic><topic>Testing</topic><topic>Two dimensional displays</topic><topic>Two-dimensions stability</topic><topic>very strict Hurwitz polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bistritz, Yuval</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bistritz, Yuval</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded-Input Bounded-Output Stability Tests for Two-Dimensional Continuous-Time Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>2134</spage><epage>2147</epage><pages>2134-2147</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[This paper presents two efficient algorithms to determine whether a bivariate polynomial, possibly with complex coefficients, does not vanish in the cross product of two closed right-half planes (is "2-C stable"). A 2-C stable polynomial in the denominator of a two-dimensional analog filter has been proved (not long ago) to imply bounded-input bounded-output (BIBO) stability. The two algorithms are entirely different but both rely on a recently proposed fraction-free (FF) Routh test for complex polynomials in this transaction. The first algorithm tests the 2-C stability of a bivariate polynomial of degree <inline-formula> <tex-math notation="LaTeX">(n_{1},n_{2}) </tex-math></inline-formula> in order <inline-formula> <tex-math notation="LaTeX">n^{6} </tex-math></inline-formula> of elementary operations (when <inline-formula> <tex-math notation="LaTeX">n_{1}=n_{2}=n </tex-math></inline-formula>). It is a "tabular type" two-dimensional stability test that can be regarded as a "Routh table" whose scalar entries were replaced by univariate polynomials. The second 2-C stability test is obtained from the first by its telepolation. It carries out the 2-C stability test by a finite collection of FF Routh tests and requires only order <inline-formula> <tex-math notation="LaTeX">n^{4} </tex-math></inline-formula> elementary operations. Both algorithms possess an integer-preserving property that enhances them with additional merits including numerical error-free decision on 2-C stability.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2021.3059839</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2021-05, Vol.68 (5), p.2134-2147 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_ieee_primary_9369853 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Analogue filters Bivariate analysis bivariate polynomials Circuit stability Complexity theory Continuous time systems Dimensional stability Half planes integer algorithms Linear systems Numerical stability Polynomials Routh test Stability criteria Stability tests Testing Two dimensional displays Two-dimensions stability very strict Hurwitz polynomials |
title | Bounded-Input Bounded-Output Stability Tests for Two-Dimensional Continuous-Time Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded-Input%20Bounded-Output%20Stability%20Tests%20for%20Two-Dimensional%20Continuous-Time%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Bistritz,%20Yuval&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=2134&rft.epage=2147&rft.pages=2134-2147&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2021.3059839&rft_dat=%3Cproquest_RIE%3E2515853619%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515853619&rft_id=info:pmid/&rft_ieee_id=9369853&rfr_iscdi=true |