DAKOTA: Sensor and Touch Screen-Based Continuous Authentication on a Mobile Banking Application
Authenticating a user in the right way is essential to IT systems, where the risks are becoming more and more complex. Especially in the mobile world, banking applications are among the most delicate systems requiring strict rules and regulations. Existing approaches often require point-of-entry aut...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.38943-38960 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38960 |
---|---|
container_issue | |
container_start_page | 38943 |
container_title | IEEE access |
container_volume | 9 |
creator | Incel, Ozlem Durmaz Gunay, Secil Akan, Yasemin Barlas, Yunus Basar, Okan Engin Alptekin, Gulfem Isiklar Isbilen, Mustafa |
description | Authenticating a user in the right way is essential to IT systems, where the risks are becoming more and more complex. Especially in the mobile world, banking applications are among the most delicate systems requiring strict rules and regulations. Existing approaches often require point-of-entry authentication accompanied by a one-time password as a second-factor authentication. However, this requires active participation of the user and there is continuous authentication during a session. In this paper, we investigate whether it is possible to continuously authenticate users via behavioral biometrics with a certain performance on a mobile banking application. A currently used mobile banking application in Turkey is chosen as the case, and we developed a continuous authentication scheme, named DAKOTA, on top of this application. The DAKOTA system records data from the touch screen and the motion sensors on the phone to monitor and model the user's behavioral patterns. Forty-five participants completed the predefined banking transactions. This data is used to train seven different classification algorithms. The results reveal that binary-SVM with RBF kernel reaches the lowest error scores, 3.5% equal error rate (EER). Using the end-to-end DAKOTA system, we investigate the performance in real-time, both in terms of authentication accuracy and resource usage. We show that it does not bring extra overhead in terms of power and memory usage compared to the original banking application and we can achieve a 90% true positive recognition rate, on average. |
doi_str_mv | 10.1109/ACCESS.2021.3063424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9367144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9367144</ieee_id><doaj_id>oai_doaj_org_article_fb1d3ee8737e46ddb3a43a6069b9d895</doaj_id><sourcerecordid>2501945323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-2c2ddd6f938d8716d0acb6ab7a9cab52155411219cfe689866a7beb423e665353</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoUaJDkC3wh0LMcviX2pqhJGzRFDnbPBB8rR65LuqR0yN-XrowgxALcXc7MLjFVtSJ4TQhWt13f3282a4opWTMsGaf8Q3VJiVQ1E0xevMs_VTc573E5bWmJ5rLSX7sfz9vuC9pAyDEhEzzaxtm9oI1LAKG-Mxk86mOYxjDHOaNunl6gVM5MYwyohEE_ox0PgO5M-D2GHeqOx8P5_br6OJhDhpvzfVX9erjf9t_rp-dvj333VDvB26mmjnrv5aBY69uGSI-Ns9LYxihnrKBECE4IJcoNIFvVSmkaC5ZTBlKK8rWr6nHR9dHs9TGNf0x61dGM-n8jpp02qSx9AD1Y4hlA27AGuPTeMsOZkVgqq3yrTlqfF61jin9nyJPexzmFsr6mAhPFBaOsoNiCcinmnGB4m0qwPhmjF2P0yRh9NqawVgtrBIA3hmKyIZyzf_-QiGI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501945323</pqid></control><display><type>article</type><title>DAKOTA: Sensor and Touch Screen-Based Continuous Authentication on a Mobile Banking Application</title><source>Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Incel, Ozlem Durmaz ; Gunay, Secil ; Akan, Yasemin ; Barlas, Yunus ; Basar, Okan Engin ; Alptekin, Gulfem Isiklar ; Isbilen, Mustafa</creator><creatorcontrib>Incel, Ozlem Durmaz ; Gunay, Secil ; Akan, Yasemin ; Barlas, Yunus ; Basar, Okan Engin ; Alptekin, Gulfem Isiklar ; Isbilen, Mustafa</creatorcontrib><description>Authenticating a user in the right way is essential to IT systems, where the risks are becoming more and more complex. Especially in the mobile world, banking applications are among the most delicate systems requiring strict rules and regulations. Existing approaches often require point-of-entry authentication accompanied by a one-time password as a second-factor authentication. However, this requires active participation of the user and there is continuous authentication during a session. In this paper, we investigate whether it is possible to continuously authenticate users via behavioral biometrics with a certain performance on a mobile banking application. A currently used mobile banking application in Turkey is chosen as the case, and we developed a continuous authentication scheme, named DAKOTA, on top of this application. The DAKOTA system records data from the touch screen and the motion sensors on the phone to monitor and model the user's behavioral patterns. Forty-five participants completed the predefined banking transactions. This data is used to train seven different classification algorithms. The results reveal that binary-SVM with RBF kernel reaches the lowest error scores, 3.5% equal error rate (EER). Using the end-to-end DAKOTA system, we investigate the performance in real-time, both in terms of authentication accuracy and resource usage. We show that it does not bring extra overhead in terms of power and memory usage compared to the original banking application and we can achieve a 90% true positive recognition rate, on average.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3063424</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Authentication ; Banking ; Behavioral biometrics ; Biological system modeling ; Biometrics ; continuous authentication ; Data models ; Interactive computer systems ; mobile applications ; Mobile commerce ; mobile sensing ; Motion sensors ; Online banking ; Passwords ; sensor-based authentication ; smartphone authentication ; Touch screens ; Touch sensitive screens</subject><ispartof>IEEE access, 2021, Vol.9, p.38943-38960</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-2c2ddd6f938d8716d0acb6ab7a9cab52155411219cfe689866a7beb423e665353</citedby><cites>FETCH-LOGICAL-c548t-2c2ddd6f938d8716d0acb6ab7a9cab52155411219cfe689866a7beb423e665353</cites><orcidid>0000-0001-9393-0781 ; 0000-0002-0612-7593 ; 0000-0002-6229-7343 ; 0000-0003-2666-8562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9367144$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Incel, Ozlem Durmaz</creatorcontrib><creatorcontrib>Gunay, Secil</creatorcontrib><creatorcontrib>Akan, Yasemin</creatorcontrib><creatorcontrib>Barlas, Yunus</creatorcontrib><creatorcontrib>Basar, Okan Engin</creatorcontrib><creatorcontrib>Alptekin, Gulfem Isiklar</creatorcontrib><creatorcontrib>Isbilen, Mustafa</creatorcontrib><title>DAKOTA: Sensor and Touch Screen-Based Continuous Authentication on a Mobile Banking Application</title><title>IEEE access</title><addtitle>Access</addtitle><description>Authenticating a user in the right way is essential to IT systems, where the risks are becoming more and more complex. Especially in the mobile world, banking applications are among the most delicate systems requiring strict rules and regulations. Existing approaches often require point-of-entry authentication accompanied by a one-time password as a second-factor authentication. However, this requires active participation of the user and there is continuous authentication during a session. In this paper, we investigate whether it is possible to continuously authenticate users via behavioral biometrics with a certain performance on a mobile banking application. A currently used mobile banking application in Turkey is chosen as the case, and we developed a continuous authentication scheme, named DAKOTA, on top of this application. The DAKOTA system records data from the touch screen and the motion sensors on the phone to monitor and model the user's behavioral patterns. Forty-five participants completed the predefined banking transactions. This data is used to train seven different classification algorithms. The results reveal that binary-SVM with RBF kernel reaches the lowest error scores, 3.5% equal error rate (EER). Using the end-to-end DAKOTA system, we investigate the performance in real-time, both in terms of authentication accuracy and resource usage. We show that it does not bring extra overhead in terms of power and memory usage compared to the original banking application and we can achieve a 90% true positive recognition rate, on average.</description><subject>Algorithms</subject><subject>Authentication</subject><subject>Banking</subject><subject>Behavioral biometrics</subject><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>continuous authentication</subject><subject>Data models</subject><subject>Interactive computer systems</subject><subject>mobile applications</subject><subject>Mobile commerce</subject><subject>mobile sensing</subject><subject>Motion sensors</subject><subject>Online banking</subject><subject>Passwords</subject><subject>sensor-based authentication</subject><subject>smartphone authentication</subject><subject>Touch screens</subject><subject>Touch sensitive screens</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoUaJDkC3wh0LMcviX2pqhJGzRFDnbPBB8rR65LuqR0yN-XrowgxALcXc7MLjFVtSJ4TQhWt13f3282a4opWTMsGaf8Q3VJiVQ1E0xevMs_VTc573E5bWmJ5rLSX7sfz9vuC9pAyDEhEzzaxtm9oI1LAKG-Mxk86mOYxjDHOaNunl6gVM5MYwyohEE_ox0PgO5M-D2GHeqOx8P5_br6OJhDhpvzfVX9erjf9t_rp-dvj333VDvB26mmjnrv5aBY69uGSI-Ns9LYxihnrKBECE4IJcoNIFvVSmkaC5ZTBlKK8rWr6nHR9dHs9TGNf0x61dGM-n8jpp02qSx9AD1Y4hlA27AGuPTeMsOZkVgqq3yrTlqfF61jin9nyJPexzmFsr6mAhPFBaOsoNiCcinmnGB4m0qwPhmjF2P0yRh9NqawVgtrBIA3hmKyIZyzf_-QiGI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Incel, Ozlem Durmaz</creator><creator>Gunay, Secil</creator><creator>Akan, Yasemin</creator><creator>Barlas, Yunus</creator><creator>Basar, Okan Engin</creator><creator>Alptekin, Gulfem Isiklar</creator><creator>Isbilen, Mustafa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9393-0781</orcidid><orcidid>https://orcid.org/0000-0002-0612-7593</orcidid><orcidid>https://orcid.org/0000-0002-6229-7343</orcidid><orcidid>https://orcid.org/0000-0003-2666-8562</orcidid></search><sort><creationdate>2021</creationdate><title>DAKOTA: Sensor and Touch Screen-Based Continuous Authentication on a Mobile Banking Application</title><author>Incel, Ozlem Durmaz ; Gunay, Secil ; Akan, Yasemin ; Barlas, Yunus ; Basar, Okan Engin ; Alptekin, Gulfem Isiklar ; Isbilen, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-2c2ddd6f938d8716d0acb6ab7a9cab52155411219cfe689866a7beb423e665353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Authentication</topic><topic>Banking</topic><topic>Behavioral biometrics</topic><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>continuous authentication</topic><topic>Data models</topic><topic>Interactive computer systems</topic><topic>mobile applications</topic><topic>Mobile commerce</topic><topic>mobile sensing</topic><topic>Motion sensors</topic><topic>Online banking</topic><topic>Passwords</topic><topic>sensor-based authentication</topic><topic>smartphone authentication</topic><topic>Touch screens</topic><topic>Touch sensitive screens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Incel, Ozlem Durmaz</creatorcontrib><creatorcontrib>Gunay, Secil</creatorcontrib><creatorcontrib>Akan, Yasemin</creatorcontrib><creatorcontrib>Barlas, Yunus</creatorcontrib><creatorcontrib>Basar, Okan Engin</creatorcontrib><creatorcontrib>Alptekin, Gulfem Isiklar</creatorcontrib><creatorcontrib>Isbilen, Mustafa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Incel, Ozlem Durmaz</au><au>Gunay, Secil</au><au>Akan, Yasemin</au><au>Barlas, Yunus</au><au>Basar, Okan Engin</au><au>Alptekin, Gulfem Isiklar</au><au>Isbilen, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DAKOTA: Sensor and Touch Screen-Based Continuous Authentication on a Mobile Banking Application</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>38943</spage><epage>38960</epage><pages>38943-38960</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Authenticating a user in the right way is essential to IT systems, where the risks are becoming more and more complex. Especially in the mobile world, banking applications are among the most delicate systems requiring strict rules and regulations. Existing approaches often require point-of-entry authentication accompanied by a one-time password as a second-factor authentication. However, this requires active participation of the user and there is continuous authentication during a session. In this paper, we investigate whether it is possible to continuously authenticate users via behavioral biometrics with a certain performance on a mobile banking application. A currently used mobile banking application in Turkey is chosen as the case, and we developed a continuous authentication scheme, named DAKOTA, on top of this application. The DAKOTA system records data from the touch screen and the motion sensors on the phone to monitor and model the user's behavioral patterns. Forty-five participants completed the predefined banking transactions. This data is used to train seven different classification algorithms. The results reveal that binary-SVM with RBF kernel reaches the lowest error scores, 3.5% equal error rate (EER). Using the end-to-end DAKOTA system, we investigate the performance in real-time, both in terms of authentication accuracy and resource usage. We show that it does not bring extra overhead in terms of power and memory usage compared to the original banking application and we can achieve a 90% true positive recognition rate, on average.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3063424</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9393-0781</orcidid><orcidid>https://orcid.org/0000-0002-0612-7593</orcidid><orcidid>https://orcid.org/0000-0002-6229-7343</orcidid><orcidid>https://orcid.org/0000-0003-2666-8562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.38943-38960 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9367144 |
source | Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Algorithms Authentication Banking Behavioral biometrics Biological system modeling Biometrics continuous authentication Data models Interactive computer systems mobile applications Mobile commerce mobile sensing Motion sensors Online banking Passwords sensor-based authentication smartphone authentication Touch screens Touch sensitive screens |
title | DAKOTA: Sensor and Touch Screen-Based Continuous Authentication on a Mobile Banking Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DAKOTA:%20Sensor%20and%20Touch%20Screen-Based%20Continuous%20Authentication%20on%20a%20Mobile%20Banking%20Application&rft.jtitle=IEEE%20access&rft.au=Incel,%20Ozlem%20Durmaz&rft.date=2021&rft.volume=9&rft.spage=38943&rft.epage=38960&rft.pages=38943-38960&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3063424&rft_dat=%3Cproquest_ieee_%3E2501945323%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501945323&rft_id=info:pmid/&rft_ieee_id=9367144&rft_doaj_id=oai_doaj_org_article_fb1d3ee8737e46ddb3a43a6069b9d895&rfr_iscdi=true |