A Solenoid With Partial Yoke for the Dune Near Detector

The Deep Underground Neutrino Experiment (DUNE) at Fermilab is one the most challenging next-generation experiments in the field of neutrino physics. It will feature two detectors for a detailed study of neutrino oscillations using an unprecedentedly intense neutrino beam. The two detectors are a Ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2021-08, Vol.31 (5), p.1-4
Hauptverfasser: Bersani, Andrea, Bross, Alan D., Caiffi, Barbara, Noto, Lea Di, Fabbricatore, Pasquale, Farinon, Stefania, Ferraro, Federico, Mitchell, Donald V., Musenich, Riccardo, Pallavicini, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 31
creator Bersani, Andrea
Bross, Alan D.
Caiffi, Barbara
Noto, Lea Di
Fabbricatore, Pasquale
Farinon, Stefania
Ferraro, Federico
Mitchell, Donald V.
Musenich, Riccardo
Pallavicini, Marco
description The Deep Underground Neutrino Experiment (DUNE) at Fermilab is one the most challenging next-generation experiments in the field of neutrino physics. It will feature two detectors for a detailed study of neutrino oscillations using an unprecedentedly intense neutrino beam. The two detectors are a Near Detector located on the Fermilab site, 574 m away from the neutrino generation, and a Far Detector in South Dakota, 1300 km away. The Near Detector consists of three subdetectors, based on different technologies in order to achieve the best understanding of the neutrino beam. One key element of the Near Detector is a High Pressure Argon TPC surrounded by a calorimeter. This detector will need a 0.5 Tesla magnetic field transverse to the neutrino beam direction, with a 7 m diameter, 8 m long warm bore. A thin superconducting solenoid with a partial yoke, needed in order to minimise the amount of material along the path particles take crossing the different elements of the Near Detector is proposed. In this paper we present a detailed magnetic analysis and a preliminary study of the cooling, the cable and the mechanics for this magnet.
doi_str_mv 10.1109/TASC.2021.3063068
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9366936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9366936</ieee_id><sourcerecordid>2506472759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5d1b011ee41cc0cf886dd59b5f94e620507cc34c50dec35db8751df50262774e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPW_N5Guzx1I_oajQingK2-ws3Vo3NUkP_ntTWoQZZg7PO_PyEnIJbATAqtv5eDYZccZhJJjOZY7IAJQyBVegjvPOFBSGc3FKzmJcMQbSSDUg5ZjO_Bp73zX0o0tL-laH1NVr-um_kLY-0LREerftkb5gHegdJnTJh3Ny0tbriBeHOSTvD_fzyVMxfX18noynhRNapEI1sGAAiBKcY641RjeNqhaqrSRqzhQrnRPSKdagE6pZmFJB0yrGNS9LiWJIrvd3fUydja7L75fO9312YcEICaXJ0M0e2gT_s8WY7MpvQ599Wa6YliUvVZUp2FMu-BgDtnYTuu86_Fpgdhei3YVodyHaQ4hZc7XXdIj4z1dC69ziD-rYaoI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506472759</pqid></control><display><type>article</type><title>A Solenoid With Partial Yoke for the Dune Near Detector</title><source>IEEE Electronic Library (IEL)</source><creator>Bersani, Andrea ; Bross, Alan D. ; Caiffi, Barbara ; Noto, Lea Di ; Fabbricatore, Pasquale ; Farinon, Stefania ; Ferraro, Federico ; Mitchell, Donald V. ; Musenich, Riccardo ; Pallavicini, Marco</creator><creatorcontrib>Bersani, Andrea ; Bross, Alan D. ; Caiffi, Barbara ; Noto, Lea Di ; Fabbricatore, Pasquale ; Farinon, Stefania ; Ferraro, Federico ; Mitchell, Donald V. ; Musenich, Riccardo ; Pallavicini, Marco ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><description>The Deep Underground Neutrino Experiment (DUNE) at Fermilab is one the most challenging next-generation experiments in the field of neutrino physics. It will feature two detectors for a detailed study of neutrino oscillations using an unprecedentedly intense neutrino beam. The two detectors are a Near Detector located on the Fermilab site, 574 m away from the neutrino generation, and a Far Detector in South Dakota, 1300 km away. The Near Detector consists of three subdetectors, based on different technologies in order to achieve the best understanding of the neutrino beam. One key element of the Near Detector is a High Pressure Argon TPC surrounded by a calorimeter. This detector will need a 0.5 Tesla magnetic field transverse to the neutrino beam direction, with a 7 m diameter, 8 m long warm bore. A thin superconducting solenoid with a partial yoke, needed in order to minimise the amount of material along the path particles take crossing the different elements of the Near Detector is proposed. In this paper we present a detailed magnetic analysis and a preliminary study of the cooling, the cable and the mechanics for this magnet.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3063068</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum stabilized rutherford cable ; Argon ; Coils ; Detectors ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Iron ; Magnet for particle physics ; Magnetic properties ; Magnetomechanical effects ; Neutrino beams ; Neutrino sources ; Neutrinos ; Sensors ; Solenoids ; Superconducting cables ; Superconducting magnets ; Thin superconducting solenoid</subject><ispartof>IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5d1b011ee41cc0cf886dd59b5f94e620507cc34c50dec35db8751df50262774e3</citedby><cites>FETCH-LOGICAL-c363t-5d1b011ee41cc0cf886dd59b5f94e620507cc34c50dec35db8751df50262774e3</cites><orcidid>0000-0002-2168-5462 ; 0000-0003-3276-5713 ; 0000-0001-7134-7544 ; 0000-0002-6487-2137 ; 0000-0003-0683-5909 ; 0000000171347544 ; 0000000332765713 ; 0000000264872137 ; 0000000221685462 ; 0000000306835909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9366936$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9366936$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1834178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bersani, Andrea</creatorcontrib><creatorcontrib>Bross, Alan D.</creatorcontrib><creatorcontrib>Caiffi, Barbara</creatorcontrib><creatorcontrib>Noto, Lea Di</creatorcontrib><creatorcontrib>Fabbricatore, Pasquale</creatorcontrib><creatorcontrib>Farinon, Stefania</creatorcontrib><creatorcontrib>Ferraro, Federico</creatorcontrib><creatorcontrib>Mitchell, Donald V.</creatorcontrib><creatorcontrib>Musenich, Riccardo</creatorcontrib><creatorcontrib>Pallavicini, Marco</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><title>A Solenoid With Partial Yoke for the Dune Near Detector</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The Deep Underground Neutrino Experiment (DUNE) at Fermilab is one the most challenging next-generation experiments in the field of neutrino physics. It will feature two detectors for a detailed study of neutrino oscillations using an unprecedentedly intense neutrino beam. The two detectors are a Near Detector located on the Fermilab site, 574 m away from the neutrino generation, and a Far Detector in South Dakota, 1300 km away. The Near Detector consists of three subdetectors, based on different technologies in order to achieve the best understanding of the neutrino beam. One key element of the Near Detector is a High Pressure Argon TPC surrounded by a calorimeter. This detector will need a 0.5 Tesla magnetic field transverse to the neutrino beam direction, with a 7 m diameter, 8 m long warm bore. A thin superconducting solenoid with a partial yoke, needed in order to minimise the amount of material along the path particles take crossing the different elements of the Near Detector is proposed. In this paper we present a detailed magnetic analysis and a preliminary study of the cooling, the cable and the mechanics for this magnet.</description><subject>Aluminum stabilized rutherford cable</subject><subject>Argon</subject><subject>Coils</subject><subject>Detectors</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Iron</subject><subject>Magnet for particle physics</subject><subject>Magnetic properties</subject><subject>Magnetomechanical effects</subject><subject>Neutrino beams</subject><subject>Neutrino sources</subject><subject>Neutrinos</subject><subject>Sensors</subject><subject>Solenoids</subject><subject>Superconducting cables</subject><subject>Superconducting magnets</subject><subject>Thin superconducting solenoid</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPW_N5Guzx1I_oajQingK2-ws3Vo3NUkP_ntTWoQZZg7PO_PyEnIJbATAqtv5eDYZccZhJJjOZY7IAJQyBVegjvPOFBSGc3FKzmJcMQbSSDUg5ZjO_Bp73zX0o0tL-laH1NVr-um_kLY-0LREerftkb5gHegdJnTJh3Ny0tbriBeHOSTvD_fzyVMxfX18noynhRNapEI1sGAAiBKcY641RjeNqhaqrSRqzhQrnRPSKdagE6pZmFJB0yrGNS9LiWJIrvd3fUydja7L75fO9312YcEICaXJ0M0e2gT_s8WY7MpvQ599Wa6YliUvVZUp2FMu-BgDtnYTuu86_Fpgdhei3YVodyHaQ4hZc7XXdIj4z1dC69ziD-rYaoI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Bersani, Andrea</creator><creator>Bross, Alan D.</creator><creator>Caiffi, Barbara</creator><creator>Noto, Lea Di</creator><creator>Fabbricatore, Pasquale</creator><creator>Farinon, Stefania</creator><creator>Ferraro, Federico</creator><creator>Mitchell, Donald V.</creator><creator>Musenich, Riccardo</creator><creator>Pallavicini, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2168-5462</orcidid><orcidid>https://orcid.org/0000-0003-3276-5713</orcidid><orcidid>https://orcid.org/0000-0001-7134-7544</orcidid><orcidid>https://orcid.org/0000-0002-6487-2137</orcidid><orcidid>https://orcid.org/0000-0003-0683-5909</orcidid><orcidid>https://orcid.org/0000000171347544</orcidid><orcidid>https://orcid.org/0000000332765713</orcidid><orcidid>https://orcid.org/0000000264872137</orcidid><orcidid>https://orcid.org/0000000221685462</orcidid><orcidid>https://orcid.org/0000000306835909</orcidid></search><sort><creationdate>20210801</creationdate><title>A Solenoid With Partial Yoke for the Dune Near Detector</title><author>Bersani, Andrea ; Bross, Alan D. ; Caiffi, Barbara ; Noto, Lea Di ; Fabbricatore, Pasquale ; Farinon, Stefania ; Ferraro, Federico ; Mitchell, Donald V. ; Musenich, Riccardo ; Pallavicini, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5d1b011ee41cc0cf886dd59b5f94e620507cc34c50dec35db8751df50262774e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum stabilized rutherford cable</topic><topic>Argon</topic><topic>Coils</topic><topic>Detectors</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Iron</topic><topic>Magnet for particle physics</topic><topic>Magnetic properties</topic><topic>Magnetomechanical effects</topic><topic>Neutrino beams</topic><topic>Neutrino sources</topic><topic>Neutrinos</topic><topic>Sensors</topic><topic>Solenoids</topic><topic>Superconducting cables</topic><topic>Superconducting magnets</topic><topic>Thin superconducting solenoid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bersani, Andrea</creatorcontrib><creatorcontrib>Bross, Alan D.</creatorcontrib><creatorcontrib>Caiffi, Barbara</creatorcontrib><creatorcontrib>Noto, Lea Di</creatorcontrib><creatorcontrib>Fabbricatore, Pasquale</creatorcontrib><creatorcontrib>Farinon, Stefania</creatorcontrib><creatorcontrib>Ferraro, Federico</creatorcontrib><creatorcontrib>Mitchell, Donald V.</creatorcontrib><creatorcontrib>Musenich, Riccardo</creatorcontrib><creatorcontrib>Pallavicini, Marco</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bersani, Andrea</au><au>Bross, Alan D.</au><au>Caiffi, Barbara</au><au>Noto, Lea Di</au><au>Fabbricatore, Pasquale</au><au>Farinon, Stefania</au><au>Ferraro, Federico</au><au>Mitchell, Donald V.</au><au>Musenich, Riccardo</au><au>Pallavicini, Marco</au><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Solenoid With Partial Yoke for the Dune Near Detector</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The Deep Underground Neutrino Experiment (DUNE) at Fermilab is one the most challenging next-generation experiments in the field of neutrino physics. It will feature two detectors for a detailed study of neutrino oscillations using an unprecedentedly intense neutrino beam. The two detectors are a Near Detector located on the Fermilab site, 574 m away from the neutrino generation, and a Far Detector in South Dakota, 1300 km away. The Near Detector consists of three subdetectors, based on different technologies in order to achieve the best understanding of the neutrino beam. One key element of the Near Detector is a High Pressure Argon TPC surrounded by a calorimeter. This detector will need a 0.5 Tesla magnetic field transverse to the neutrino beam direction, with a 7 m diameter, 8 m long warm bore. A thin superconducting solenoid with a partial yoke, needed in order to minimise the amount of material along the path particles take crossing the different elements of the Near Detector is proposed. In this paper we present a detailed magnetic analysis and a preliminary study of the cooling, the cable and the mechanics for this magnet.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3063068</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2168-5462</orcidid><orcidid>https://orcid.org/0000-0003-3276-5713</orcidid><orcidid>https://orcid.org/0000-0001-7134-7544</orcidid><orcidid>https://orcid.org/0000-0002-6487-2137</orcidid><orcidid>https://orcid.org/0000-0003-0683-5909</orcidid><orcidid>https://orcid.org/0000000171347544</orcidid><orcidid>https://orcid.org/0000000332765713</orcidid><orcidid>https://orcid.org/0000000264872137</orcidid><orcidid>https://orcid.org/0000000221685462</orcidid><orcidid>https://orcid.org/0000000306835909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_9366936
source IEEE Electronic Library (IEL)
subjects Aluminum stabilized rutherford cable
Argon
Coils
Detectors
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Iron
Magnet for particle physics
Magnetic properties
Magnetomechanical effects
Neutrino beams
Neutrino sources
Neutrinos
Sensors
Solenoids
Superconducting cables
Superconducting magnets
Thin superconducting solenoid
title A Solenoid With Partial Yoke for the Dune Near Detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Solenoid%20With%20Partial%20Yoke%20for%20the%20Dune%20Near%20Detector&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Bersani,%20Andrea&rft.aucorp=Fermi%20National%20Accelerator%20Lab.%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2021-08-01&rft.volume=31&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3063068&rft_dat=%3Cproquest_RIE%3E2506472759%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506472759&rft_id=info:pmid/&rft_ieee_id=9366936&rfr_iscdi=true