Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving

Model predictive control (MPC) using randomized optimization is expected to solve different control problems. However, it still faces various challenges for real-world applications. This paper attempts to solve those challenges and demonstrates a successful implementation of randomized MPC on the au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2022-03, Vol.7 (1), p.11-20
Hauptverfasser: Muraleedharan, Arun, Okuda, Hiroyuki, Suzuki, Tatsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 11
container_title IEEE transactions on intelligent vehicles
container_volume 7
creator Muraleedharan, Arun
Okuda, Hiroyuki
Suzuki, Tatsuya
description Model predictive control (MPC) using randomized optimization is expected to solve different control problems. However, it still faces various challenges for real-world applications. This paper attempts to solve those challenges and demonstrates a successful implementation of randomized MPC on the autonomous driving using a radio-controlled (RC) car. First of all, a sample generation technique in the frequency domain is discussed. This prevents undesirable randomness which affect the smoothness of the steering operation. Second, the proposed randomized MPC is implemented on a Graphics Processing Unit (GPU). The expected GPU acceleration in calculation speed at various problem sizes is also presented. The results show the improved control performance and computational speed that was not achievable using CPU based implementation. Besides, the selection of parameters for randomized MPC is discussed. The usefulness of the proposed scheme is demonstrated by both simulation and experiments. In the experiments, a 1/10 model RC car is used for collision avoidance task by autonomous driving.
doi_str_mv 10.1109/TIV.2021.3062730
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9366366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9366366</ieee_id><sourcerecordid>2653372232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-6a063d84da672427987eecb0fa3de131a40c449400b745e96f7fdf343ced991e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGrvgpeA562TjyabY6lfhYpSaq9LuplIyu6mZncF_fW2tAoD7xyedwYeQq4ZjBkDc7ear8ccOBsLUFwLOCMDLrTJcgPy_G_PJ_klGbXtFgCYynkOZkDWS7RVtgo10nm9q7DGprNdiA2Nni5t42IdftDRl-iwom8JXSi78IV0FpsuxYr6mOi072IT69i39D6Fr9B8XJELb6sWR6cckvfHh9XsOVu8Ps1n00VWCmO6TFlQwuXSWaW55NrkGrHcgLfCIRPMSiilNBJgo-UEjfLaOy-kKNEZw1AMye3x7i7Fzx7brtjGPjX7lwVXEyE054LvKThSZYptm9AXuxRqm74LBsVBYLEXWBwEFieB-8rNsRIQ8R83QqnD_AJthGwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653372232</pqid></control><display><type>article</type><title>Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving</title><source>IEEE Electronic Library (IEL)</source><creator>Muraleedharan, Arun ; Okuda, Hiroyuki ; Suzuki, Tatsuya</creator><creatorcontrib>Muraleedharan, Arun ; Okuda, Hiroyuki ; Suzuki, Tatsuya</creatorcontrib><description>Model predictive control (MPC) using randomized optimization is expected to solve different control problems. However, it still faces various challenges for real-world applications. This paper attempts to solve those challenges and demonstrates a successful implementation of randomized MPC on the autonomous driving using a radio-controlled (RC) car. First of all, a sample generation technique in the frequency domain is discussed. This prevents undesirable randomness which affect the smoothness of the steering operation. Second, the proposed randomized MPC is implemented on a Graphics Processing Unit (GPU). The expected GPU acceleration in calculation speed at various problem sizes is also presented. The results show the improved control performance and computational speed that was not achievable using CPU based implementation. Besides, the selection of parameters for randomized MPC is discussed. The usefulness of the proposed scheme is demonstrated by both simulation and experiments. In the experiments, a 1/10 model RC car is used for collision avoidance task by autonomous driving.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2021.3062730</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Automobiles ; Autonomous vehicles ; Collision avoidance ; Computational modeling ; Frequency-domain analysis ; graphics processing unit (GPU) ; Graphics processing units ; model predictive control ; Optimization ; Predictive control ; Radio control ; Real-time systems ; sampling based optimization ; Smoothness ; Steering ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent vehicles, 2022-03, Vol.7 (1), p.11-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-6a063d84da672427987eecb0fa3de131a40c449400b745e96f7fdf343ced991e3</citedby><cites>FETCH-LOGICAL-c399t-6a063d84da672427987eecb0fa3de131a40c449400b745e96f7fdf343ced991e3</cites><orcidid>0000-0002-0182-308X ; 0000-0003-4088-3613 ; 0000-0002-2910-4634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9366366$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Muraleedharan, Arun</creatorcontrib><creatorcontrib>Okuda, Hiroyuki</creatorcontrib><creatorcontrib>Suzuki, Tatsuya</creatorcontrib><title>Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Model predictive control (MPC) using randomized optimization is expected to solve different control problems. However, it still faces various challenges for real-world applications. This paper attempts to solve those challenges and demonstrates a successful implementation of randomized MPC on the autonomous driving using a radio-controlled (RC) car. First of all, a sample generation technique in the frequency domain is discussed. This prevents undesirable randomness which affect the smoothness of the steering operation. Second, the proposed randomized MPC is implemented on a Graphics Processing Unit (GPU). The expected GPU acceleration in calculation speed at various problem sizes is also presented. The results show the improved control performance and computational speed that was not achievable using CPU based implementation. Besides, the selection of parameters for randomized MPC is discussed. The usefulness of the proposed scheme is demonstrated by both simulation and experiments. In the experiments, a 1/10 model RC car is used for collision avoidance task by autonomous driving.</description><subject>Acceleration</subject><subject>Automobiles</subject><subject>Autonomous vehicles</subject><subject>Collision avoidance</subject><subject>Computational modeling</subject><subject>Frequency-domain analysis</subject><subject>graphics processing unit (GPU)</subject><subject>Graphics processing units</subject><subject>model predictive control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Radio control</subject><subject>Real-time systems</subject><subject>sampling based optimization</subject><subject>Smoothness</subject><subject>Steering</subject><subject>Vehicle dynamics</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGrvgpeA562TjyabY6lfhYpSaq9LuplIyu6mZncF_fW2tAoD7xyedwYeQq4ZjBkDc7ear8ccOBsLUFwLOCMDLrTJcgPy_G_PJ_klGbXtFgCYynkOZkDWS7RVtgo10nm9q7DGprNdiA2Nni5t42IdftDRl-iwom8JXSi78IV0FpsuxYr6mOi072IT69i39D6Fr9B8XJELb6sWR6cckvfHh9XsOVu8Ps1n00VWCmO6TFlQwuXSWaW55NrkGrHcgLfCIRPMSiilNBJgo-UEjfLaOy-kKNEZw1AMye3x7i7Fzx7brtjGPjX7lwVXEyE054LvKThSZYptm9AXuxRqm74LBsVBYLEXWBwEFieB-8rNsRIQ8R83QqnD_AJthGwM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Muraleedharan, Arun</creator><creator>Okuda, Hiroyuki</creator><creator>Suzuki, Tatsuya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0182-308X</orcidid><orcidid>https://orcid.org/0000-0003-4088-3613</orcidid><orcidid>https://orcid.org/0000-0002-2910-4634</orcidid></search><sort><creationdate>20220301</creationdate><title>Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving</title><author>Muraleedharan, Arun ; Okuda, Hiroyuki ; Suzuki, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-6a063d84da672427987eecb0fa3de131a40c449400b745e96f7fdf343ced991e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Automobiles</topic><topic>Autonomous vehicles</topic><topic>Collision avoidance</topic><topic>Computational modeling</topic><topic>Frequency-domain analysis</topic><topic>graphics processing unit (GPU)</topic><topic>Graphics processing units</topic><topic>model predictive control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Radio control</topic><topic>Real-time systems</topic><topic>sampling based optimization</topic><topic>Smoothness</topic><topic>Steering</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muraleedharan, Arun</creatorcontrib><creatorcontrib>Okuda, Hiroyuki</creatorcontrib><creatorcontrib>Suzuki, Tatsuya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muraleedharan, Arun</au><au>Okuda, Hiroyuki</au><au>Suzuki, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Model predictive control (MPC) using randomized optimization is expected to solve different control problems. However, it still faces various challenges for real-world applications. This paper attempts to solve those challenges and demonstrates a successful implementation of randomized MPC on the autonomous driving using a radio-controlled (RC) car. First of all, a sample generation technique in the frequency domain is discussed. This prevents undesirable randomness which affect the smoothness of the steering operation. Second, the proposed randomized MPC is implemented on a Graphics Processing Unit (GPU). The expected GPU acceleration in calculation speed at various problem sizes is also presented. The results show the improved control performance and computational speed that was not achievable using CPU based implementation. Besides, the selection of parameters for randomized MPC is discussed. The usefulness of the proposed scheme is demonstrated by both simulation and experiments. In the experiments, a 1/10 model RC car is used for collision avoidance task by autonomous driving.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2021.3062730</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0182-308X</orcidid><orcidid>https://orcid.org/0000-0003-4088-3613</orcidid><orcidid>https://orcid.org/0000-0002-2910-4634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2022-03, Vol.7 (1), p.11-20
issn 2379-8858
2379-8904
language eng
recordid cdi_ieee_primary_9366366
source IEEE Electronic Library (IEL)
subjects Acceleration
Automobiles
Autonomous vehicles
Collision avoidance
Computational modeling
Frequency-domain analysis
graphics processing unit (GPU)
Graphics processing units
model predictive control
Optimization
Predictive control
Radio control
Real-time systems
sampling based optimization
Smoothness
Steering
Vehicle dynamics
title Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Implementation%20of%20Randomized%20Model%20Predictive%20Control%20for%20Autonomous%20Driving&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Muraleedharan,%20Arun&rft.date=2022-03-01&rft.volume=7&rft.issue=1&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2021.3062730&rft_dat=%3Cproquest_ieee_%3E2653372232%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653372232&rft_id=info:pmid/&rft_ieee_id=9366366&rfr_iscdi=true