Implementation and Analytics of the Distributed Eco-Driving Simulation iCO2
We describe iCO 2 , a simulation platform for collecting driving behavior data. It is designed as the first massively multiplayer online game for mobile devices to practice eco-friendly driving. It facilitates the collection of large-scale data on driving behavior to better understand compliance and...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.36252-36265 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36265 |
---|---|
container_issue | |
container_start_page | 36252 |
container_title | IEEE access |
container_volume | 9 |
creator | Hollerit, Bernd Prendinger, Helmut Jain, Raghvendra Fontes, Daniela Campos, Henrique Damas, Hugo Fang, Anjie Prada, Rui Cavazza, Marc |
description | We describe iCO 2 , a simulation platform for collecting driving behavior data. It is designed as the first massively multiplayer online game for mobile devices to practice eco-friendly driving. It facilitates the collection of large-scale data on driving behavior to better understand compliance and incentive mechanisms for eco-driving and users' preferences. We present the results of a campaign with iCO 2 that used a game promoter to attract 2455 users. The results are described from three angles: (1) types of drivers are identified by clustering driving behavior; (2) types of players are identified by relating players' interaction with game elements and their driving behavior; (3) by looking at longer sessions, we demonstrate that players who show eco-unfriendly behavior at the beginning of the session improve their eco-driving behavior throughout their playtime. |
doi_str_mv | 10.1109/ACCESS.2021.3062325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9363876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9363876</ieee_id><doaj_id>oai_doaj_org_article_7d53a45f28824ae188c234b429a79033</doaj_id><sourcerecordid>2498877421</sourcerecordid><originalsourceid>FETCH-LOGICAL-d2295-a8569d78663b29140ae4193770b2945fd83e0a6ac617e9f3042d64506c9d71db3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdBsFQ_QS8Bz6m7s_-PJa1aLPRQPYdNdlO3JNm6SYR-excrzmWYx3u_GQahBcFLQrB-WhXF5nBYAgaypFgABX6DZkCEzimn4g49DMMJp1JJ4nKG3rbduXWd60cz-tBnprfZqjftZfT1kIUmGz9dtvbDGH01jc5mmzrk6-i_fX_MDr6b2mvOF3u4R7eNaQf38Nfn6ON581685rv9y7ZY7XILoHluFBfaSiUErUATho1jRFMpcRoZb6yiDhthakGk0w3FDKxgHIs6pYit6Bxtr1wbzKk8R9-ZeCmD8eWvEOKxNDHd37pSWk5NYoJSwIwjStVAWcVAG6kxpYn1eGWdY_ia3DCWpzDF9IChBKaVkpIBSa7F1eWdc_8bNRVUSUF_ABXfbis</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498877421</pqid></control><display><type>article</type><title>Implementation and Analytics of the Distributed Eco-Driving Simulation iCO2</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hollerit, Bernd ; Prendinger, Helmut ; Jain, Raghvendra ; Fontes, Daniela ; Campos, Henrique ; Damas, Hugo ; Fang, Anjie ; Prada, Rui ; Cavazza, Marc</creator><creatorcontrib>Hollerit, Bernd ; Prendinger, Helmut ; Jain, Raghvendra ; Fontes, Daniela ; Campos, Henrique ; Damas, Hugo ; Fang, Anjie ; Prada, Rui ; Cavazza, Marc</creatorcontrib><description>We describe iCO 2 , a simulation platform for collecting driving behavior data. It is designed as the first massively multiplayer online game for mobile devices to practice eco-friendly driving. It facilitates the collection of large-scale data on driving behavior to better understand compliance and incentive mechanisms for eco-driving and users' preferences. We present the results of a campaign with iCO 2 that used a game promoter to attract 2455 users. The results are described from three angles: (1) types of drivers are identified by clustering driving behavior; (2) types of players are identified by relating players' interaction with game elements and their driving behavior; (3) by looking at longer sessions, we demonstrate that players who show eco-unfriendly behavior at the beginning of the session improve their eco-driving behavior throughout their playtime.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3062325</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>assessment of VR ; Automobiles ; Clustering ; Computer & video games ; Crowdsourcing ; Data collection ; education and training ; Educational software ; Electronic devices ; entertainment and gaming ; Fuels ; game analytics ; Games ; human factors ; massively multi-player games ; multi-player games ; Players ; serious games ; Speed limits ; Training ; user tracking ; Vehicles ; Virtual reality</subject><ispartof>IEEE access, 2021, Vol.9, p.36252-36265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5370-1893 ; 0000-0001-6113-9696 ; 0000-0003-4654-9835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9363876$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Hollerit, Bernd</creatorcontrib><creatorcontrib>Prendinger, Helmut</creatorcontrib><creatorcontrib>Jain, Raghvendra</creatorcontrib><creatorcontrib>Fontes, Daniela</creatorcontrib><creatorcontrib>Campos, Henrique</creatorcontrib><creatorcontrib>Damas, Hugo</creatorcontrib><creatorcontrib>Fang, Anjie</creatorcontrib><creatorcontrib>Prada, Rui</creatorcontrib><creatorcontrib>Cavazza, Marc</creatorcontrib><title>Implementation and Analytics of the Distributed Eco-Driving Simulation iCO2</title><title>IEEE access</title><addtitle>Access</addtitle><description>We describe iCO 2 , a simulation platform for collecting driving behavior data. It is designed as the first massively multiplayer online game for mobile devices to practice eco-friendly driving. It facilitates the collection of large-scale data on driving behavior to better understand compliance and incentive mechanisms for eco-driving and users' preferences. We present the results of a campaign with iCO 2 that used a game promoter to attract 2455 users. The results are described from three angles: (1) types of drivers are identified by clustering driving behavior; (2) types of players are identified by relating players' interaction with game elements and their driving behavior; (3) by looking at longer sessions, we demonstrate that players who show eco-unfriendly behavior at the beginning of the session improve their eco-driving behavior throughout their playtime.</description><subject>assessment of VR</subject><subject>Automobiles</subject><subject>Clustering</subject><subject>Computer & video games</subject><subject>Crowdsourcing</subject><subject>Data collection</subject><subject>education and training</subject><subject>Educational software</subject><subject>Electronic devices</subject><subject>entertainment and gaming</subject><subject>Fuels</subject><subject>game analytics</subject><subject>Games</subject><subject>human factors</subject><subject>massively multi-player games</subject><subject>multi-player games</subject><subject>Players</subject><subject>serious games</subject><subject>Speed limits</subject><subject>Training</subject><subject>user tracking</subject><subject>Vehicles</subject><subject>Virtual reality</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE9Lw0AQxRdBsFQ_QS8Bz6m7s_-PJa1aLPRQPYdNdlO3JNm6SYR-excrzmWYx3u_GQahBcFLQrB-WhXF5nBYAgaypFgABX6DZkCEzimn4g49DMMJp1JJ4nKG3rbduXWd60cz-tBnprfZqjftZfT1kIUmGz9dtvbDGH01jc5mmzrk6-i_fX_MDr6b2mvOF3u4R7eNaQf38Nfn6ON581685rv9y7ZY7XILoHluFBfaSiUErUATho1jRFMpcRoZb6yiDhthakGk0w3FDKxgHIs6pYit6Bxtr1wbzKk8R9-ZeCmD8eWvEOKxNDHd37pSWk5NYoJSwIwjStVAWcVAG6kxpYn1eGWdY_ia3DCWpzDF9IChBKaVkpIBSa7F1eWdc_8bNRVUSUF_ABXfbis</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hollerit, Bernd</creator><creator>Prendinger, Helmut</creator><creator>Jain, Raghvendra</creator><creator>Fontes, Daniela</creator><creator>Campos, Henrique</creator><creator>Damas, Hugo</creator><creator>Fang, Anjie</creator><creator>Prada, Rui</creator><creator>Cavazza, Marc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5370-1893</orcidid><orcidid>https://orcid.org/0000-0001-6113-9696</orcidid><orcidid>https://orcid.org/0000-0003-4654-9835</orcidid></search><sort><creationdate>2021</creationdate><title>Implementation and Analytics of the Distributed Eco-Driving Simulation iCO2</title><author>Hollerit, Bernd ; Prendinger, Helmut ; Jain, Raghvendra ; Fontes, Daniela ; Campos, Henrique ; Damas, Hugo ; Fang, Anjie ; Prada, Rui ; Cavazza, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d2295-a8569d78663b29140ae4193770b2945fd83e0a6ac617e9f3042d64506c9d71db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>assessment of VR</topic><topic>Automobiles</topic><topic>Clustering</topic><topic>Computer & video games</topic><topic>Crowdsourcing</topic><topic>Data collection</topic><topic>education and training</topic><topic>Educational software</topic><topic>Electronic devices</topic><topic>entertainment and gaming</topic><topic>Fuels</topic><topic>game analytics</topic><topic>Games</topic><topic>human factors</topic><topic>massively multi-player games</topic><topic>multi-player games</topic><topic>Players</topic><topic>serious games</topic><topic>Speed limits</topic><topic>Training</topic><topic>user tracking</topic><topic>Vehicles</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollerit, Bernd</creatorcontrib><creatorcontrib>Prendinger, Helmut</creatorcontrib><creatorcontrib>Jain, Raghvendra</creatorcontrib><creatorcontrib>Fontes, Daniela</creatorcontrib><creatorcontrib>Campos, Henrique</creatorcontrib><creatorcontrib>Damas, Hugo</creatorcontrib><creatorcontrib>Fang, Anjie</creatorcontrib><creatorcontrib>Prada, Rui</creatorcontrib><creatorcontrib>Cavazza, Marc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollerit, Bernd</au><au>Prendinger, Helmut</au><au>Jain, Raghvendra</au><au>Fontes, Daniela</au><au>Campos, Henrique</au><au>Damas, Hugo</au><au>Fang, Anjie</au><au>Prada, Rui</au><au>Cavazza, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and Analytics of the Distributed Eco-Driving Simulation iCO2</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>36252</spage><epage>36265</epage><pages>36252-36265</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We describe iCO 2 , a simulation platform for collecting driving behavior data. It is designed as the first massively multiplayer online game for mobile devices to practice eco-friendly driving. It facilitates the collection of large-scale data on driving behavior to better understand compliance and incentive mechanisms for eco-driving and users' preferences. We present the results of a campaign with iCO 2 that used a game promoter to attract 2455 users. The results are described from three angles: (1) types of drivers are identified by clustering driving behavior; (2) types of players are identified by relating players' interaction with game elements and their driving behavior; (3) by looking at longer sessions, we demonstrate that players who show eco-unfriendly behavior at the beginning of the session improve their eco-driving behavior throughout their playtime.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3062325</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5370-1893</orcidid><orcidid>https://orcid.org/0000-0001-6113-9696</orcidid><orcidid>https://orcid.org/0000-0003-4654-9835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.36252-36265 |
issn | 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9363876 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | assessment of VR Automobiles Clustering Computer & video games Crowdsourcing Data collection education and training Educational software Electronic devices entertainment and gaming Fuels game analytics Games human factors massively multi-player games multi-player games Players serious games Speed limits Training user tracking Vehicles Virtual reality |
title | Implementation and Analytics of the Distributed Eco-Driving Simulation iCO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20Analytics%20of%20the%20Distributed%20Eco-Driving%20Simulation%20iCO2&rft.jtitle=IEEE%20access&rft.au=Hollerit,%20Bernd&rft.date=2021&rft.volume=9&rft.spage=36252&rft.epage=36265&rft.pages=36252-36265&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3062325&rft_dat=%3Cproquest_ieee_%3E2498877421%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498877421&rft_id=info:pmid/&rft_ieee_id=9363876&rft_doaj_id=oai_doaj_org_article_7d53a45f28824ae188c234b429a79033&rfr_iscdi=true |