A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS

This letter presents a {W} -band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage ( {V} _{\mathbf {DD}} ) to achieve low power consumption and respond to the low-voltage regime anticipated in future...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless components letters 2021-05, Vol.31 (5), p.481-484
Hauptverfasser: Liang, Chia-Jen, Chiang, Ching-Wen, Zhou, Jia, Huang, Rulin, Wen, Kuei-Ann, Frank Chang, Mau-Chung, Kuan, Yen-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 5
container_start_page 481
container_title IEEE microwave and wireless components letters
container_volume 31
creator Liang, Chia-Jen
Chiang, Ching-Wen
Zhou, Jia
Huang, Rulin
Wen, Kuei-Ann
Frank Chang, Mau-Chung
Kuan, Yen-Cheng
description This letter presents a {W} -band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage ( {V} _{\mathbf {DD}} ) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .
doi_str_mv 10.1109/LMWC.2021.3062027
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9363237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9363237</ieee_id><sourcerecordid>2522907180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i480-ace9d904a27ab1325caf4444952f6dbba7a687b930ab5d6d0ccf60905c96ff463</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMoOKc_QLwJeJ365qNJc7l1fkG3gY7tsqRtApldO9MW0V9vZZ6b51w8nIPQLYWIUtAP2XKXRgwYjTjIkeoMTWgcJ4QqKc7_OqeEctCX6Krr9gBUJIJO0NsMQyTJFm8XC7wjc9NUeGWHPpja_9gKL7xzNtim96bGWfuFV63vLJ4djrV33gbsG8wS0hzwfKg_cLpcv1-jC2fqzt78c4o2T4-b9IVk6-fXdJYRLxIgprS60iAMU6agnMWlcWKMjpmTVVEYZWSiCs3BFHElKyhLJ0FDXGrpnJB8iu5Ps8fQfg626_N9O4RmfMxZzJgGRRMYrbuT5a21-TH4gwnfueaSM674L3kQVzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522907180</pqid></control><display><type>article</type><title>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Chia-Jen ; Chiang, Ching-Wen ; Zhou, Jia ; Huang, Rulin ; Wen, Kuei-Ann ; Frank Chang, Mau-Chung ; Kuan, Yen-Cheng</creator><creatorcontrib>Liang, Chia-Jen ; Chiang, Ching-Wen ; Zhou, Jia ; Huang, Rulin ; Wen, Kuei-Ann ; Frank Chang, Mau-Chung ; Kuan, Yen-Cheng</creatorcontrib><description><![CDATA[This letter presents a <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathbf {DD}} </tex-math></inline-formula>) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .]]></description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2021.3062027</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>28-nm bulk CMOS ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;W -band ; Amplification ; Amplifiers ; CMOS ; CMOS technology ; Coils ; differential low noise amplifier (LNA) ; Electric potential ; Gain ; High gain ; low &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;VDD ; Low noise ; low power ; low supply voltage ; Microwave amplifiers ; millimeter-wave (mmWave) ; neutralized common-source ; Noise measurement ; Noise reduction ; Power consumption ; Power gain ; Resistors ; Semiconductor device measurement ; Stability analysis ; Topology ; Transformers ; Voltage ; Wireless communication</subject><ispartof>IEEE microwave and wireless components letters, 2021-05, Vol.31 (5), p.481-484</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9887-1124 ; 0000-0001-7026-4595 ; 0000-0003-1347-892X ; 0000-0002-2501-1043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9363237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9363237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Chia-Jen</creatorcontrib><creatorcontrib>Chiang, Ching-Wen</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Huang, Rulin</creatorcontrib><creatorcontrib>Wen, Kuei-Ann</creatorcontrib><creatorcontrib>Frank Chang, Mau-Chung</creatorcontrib><creatorcontrib>Kuan, Yen-Cheng</creatorcontrib><title>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description><![CDATA[This letter presents a <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathbf {DD}} </tex-math></inline-formula>) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .]]></description><subject>28-nm bulk CMOS</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;W -band</subject><subject>Amplification</subject><subject>Amplifiers</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Coils</subject><subject>differential low noise amplifier (LNA)</subject><subject>Electric potential</subject><subject>Gain</subject><subject>High gain</subject><subject>low &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;VDD</subject><subject>Low noise</subject><subject>low power</subject><subject>low supply voltage</subject><subject>Microwave amplifiers</subject><subject>millimeter-wave (mmWave)</subject><subject>neutralized common-source</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Power consumption</subject><subject>Power gain</subject><subject>Resistors</subject><subject>Semiconductor device measurement</subject><subject>Stability analysis</subject><subject>Topology</subject><subject>Transformers</subject><subject>Voltage</subject><subject>Wireless communication</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjV1LwzAYhYMoOKc_QLwJeJ365qNJc7l1fkG3gY7tsqRtApldO9MW0V9vZZ6b51w8nIPQLYWIUtAP2XKXRgwYjTjIkeoMTWgcJ4QqKc7_OqeEctCX6Krr9gBUJIJO0NsMQyTJFm8XC7wjc9NUeGWHPpja_9gKL7xzNtim96bGWfuFV63vLJ4djrV33gbsG8wS0hzwfKg_cLpcv1-jC2fqzt78c4o2T4-b9IVk6-fXdJYRLxIgprS60iAMU6agnMWlcWKMjpmTVVEYZWSiCs3BFHElKyhLJ0FDXGrpnJB8iu5Ps8fQfg626_N9O4RmfMxZzJgGRRMYrbuT5a21-TH4gwnfueaSM674L3kQVzI</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Liang, Chia-Jen</creator><creator>Chiang, Ching-Wen</creator><creator>Zhou, Jia</creator><creator>Huang, Rulin</creator><creator>Wen, Kuei-Ann</creator><creator>Frank Chang, Mau-Chung</creator><creator>Kuan, Yen-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9887-1124</orcidid><orcidid>https://orcid.org/0000-0001-7026-4595</orcidid><orcidid>https://orcid.org/0000-0003-1347-892X</orcidid><orcidid>https://orcid.org/0000-0002-2501-1043</orcidid></search><sort><creationdate>202105</creationdate><title>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</title><author>Liang, Chia-Jen ; Chiang, Ching-Wen ; Zhou, Jia ; Huang, Rulin ; Wen, Kuei-Ann ; Frank Chang, Mau-Chung ; Kuan, Yen-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i480-ace9d904a27ab1325caf4444952f6dbba7a687b930ab5d6d0ccf60905c96ff463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>28-nm bulk CMOS</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;W -band</topic><topic>Amplification</topic><topic>Amplifiers</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Coils</topic><topic>differential low noise amplifier (LNA)</topic><topic>Electric potential</topic><topic>Gain</topic><topic>High gain</topic><topic>low &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;VDD</topic><topic>Low noise</topic><topic>low power</topic><topic>low supply voltage</topic><topic>Microwave amplifiers</topic><topic>millimeter-wave (mmWave)</topic><topic>neutralized common-source</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Power consumption</topic><topic>Power gain</topic><topic>Resistors</topic><topic>Semiconductor device measurement</topic><topic>Stability analysis</topic><topic>Topology</topic><topic>Transformers</topic><topic>Voltage</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Chia-Jen</creatorcontrib><creatorcontrib>Chiang, Ching-Wen</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Huang, Rulin</creatorcontrib><creatorcontrib>Wen, Kuei-Ann</creatorcontrib><creatorcontrib>Frank Chang, Mau-Chung</creatorcontrib><creatorcontrib>Kuan, Yen-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Chia-Jen</au><au>Chiang, Ching-Wen</au><au>Zhou, Jia</au><au>Huang, Rulin</au><au>Wen, Kuei-Ann</au><au>Frank Chang, Mau-Chung</au><au>Kuan, Yen-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2021-05</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>481</spage><epage>484</epage><pages>481-484</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract><![CDATA[This letter presents a <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathbf {DD}} </tex-math></inline-formula>) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LMWC.2021.3062027</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9887-1124</orcidid><orcidid>https://orcid.org/0000-0001-7026-4595</orcidid><orcidid>https://orcid.org/0000-0003-1347-892X</orcidid><orcidid>https://orcid.org/0000-0002-2501-1043</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1531-1309
ispartof IEEE microwave and wireless components letters, 2021-05, Vol.31 (5), p.481-484
issn 1531-1309
2771-957X
1558-1764
2771-9588
language eng
recordid cdi_ieee_primary_9363237
source IEEE Electronic Library (IEL)
subjects 28-nm bulk CMOS
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band
Amplification
Amplifiers
CMOS
CMOS technology
Coils
differential low noise amplifier (LNA)
Electric potential
Gain
High gain
low <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">VDD
Low noise
low power
low supply voltage
Microwave amplifiers
millimeter-wave (mmWave)
neutralized common-source
Noise measurement
Noise reduction
Power consumption
Power gain
Resistors
Semiconductor device measurement
Stability analysis
Topology
Transformers
Voltage
Wireless communication
title A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.6-V%20VDD%20W-Band%20Neutralized%20Differential%20Low%20Noise%20Amplifier%20in%2028-nm%20Bulk%20CMOS&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Liang,%20Chia-Jen&rft.date=2021-05&rft.volume=31&rft.issue=5&rft.spage=481&rft.epage=484&rft.pages=481-484&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2021.3062027&rft_dat=%3Cproquest_RIE%3E2522907180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522907180&rft_id=info:pmid/&rft_ieee_id=9363237&rfr_iscdi=true