A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS
This letter presents a {W} -band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage ( {V} _{\mathbf {DD}} ) to achieve low power consumption and respond to the low-voltage regime anticipated in future...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless components letters 2021-05, Vol.31 (5), p.481-484 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | 5 |
container_start_page | 481 |
container_title | IEEE microwave and wireless components letters |
container_volume | 31 |
creator | Liang, Chia-Jen Chiang, Ching-Wen Zhou, Jia Huang, Rulin Wen, Kuei-Ann Frank Chang, Mau-Chung Kuan, Yen-Cheng |
description | This letter presents a {W} -band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage ( {V} _{\mathbf {DD}} ) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 . |
doi_str_mv | 10.1109/LMWC.2021.3062027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9363237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9363237</ieee_id><sourcerecordid>2522907180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i480-ace9d904a27ab1325caf4444952f6dbba7a687b930ab5d6d0ccf60905c96ff463</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMoOKc_QLwJeJ365qNJc7l1fkG3gY7tsqRtApldO9MW0V9vZZ6b51w8nIPQLYWIUtAP2XKXRgwYjTjIkeoMTWgcJ4QqKc7_OqeEctCX6Krr9gBUJIJO0NsMQyTJFm8XC7wjc9NUeGWHPpja_9gKL7xzNtim96bGWfuFV63vLJ4djrV33gbsG8wS0hzwfKg_cLpcv1-jC2fqzt78c4o2T4-b9IVk6-fXdJYRLxIgprS60iAMU6agnMWlcWKMjpmTVVEYZWSiCs3BFHElKyhLJ0FDXGrpnJB8iu5Ps8fQfg626_N9O4RmfMxZzJgGRRMYrbuT5a21-TH4gwnfueaSM674L3kQVzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522907180</pqid></control><display><type>article</type><title>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Chia-Jen ; Chiang, Ching-Wen ; Zhou, Jia ; Huang, Rulin ; Wen, Kuei-Ann ; Frank Chang, Mau-Chung ; Kuan, Yen-Cheng</creator><creatorcontrib>Liang, Chia-Jen ; Chiang, Ching-Wen ; Zhou, Jia ; Huang, Rulin ; Wen, Kuei-Ann ; Frank Chang, Mau-Chung ; Kuan, Yen-Cheng</creatorcontrib><description><![CDATA[This letter presents a <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathbf {DD}} </tex-math></inline-formula>) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .]]></description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2021.3062027</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>28-nm bulk CMOS ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band ; Amplification ; Amplifiers ; CMOS ; CMOS technology ; Coils ; differential low noise amplifier (LNA) ; Electric potential ; Gain ; High gain ; low <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">VDD ; Low noise ; low power ; low supply voltage ; Microwave amplifiers ; millimeter-wave (mmWave) ; neutralized common-source ; Noise measurement ; Noise reduction ; Power consumption ; Power gain ; Resistors ; Semiconductor device measurement ; Stability analysis ; Topology ; Transformers ; Voltage ; Wireless communication</subject><ispartof>IEEE microwave and wireless components letters, 2021-05, Vol.31 (5), p.481-484</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9887-1124 ; 0000-0001-7026-4595 ; 0000-0003-1347-892X ; 0000-0002-2501-1043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9363237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9363237$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Chia-Jen</creatorcontrib><creatorcontrib>Chiang, Ching-Wen</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Huang, Rulin</creatorcontrib><creatorcontrib>Wen, Kuei-Ann</creatorcontrib><creatorcontrib>Frank Chang, Mau-Chung</creatorcontrib><creatorcontrib>Kuan, Yen-Cheng</creatorcontrib><title>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description><![CDATA[This letter presents a <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathbf {DD}} </tex-math></inline-formula>) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .]]></description><subject>28-nm bulk CMOS</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band</subject><subject>Amplification</subject><subject>Amplifiers</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Coils</subject><subject>differential low noise amplifier (LNA)</subject><subject>Electric potential</subject><subject>Gain</subject><subject>High gain</subject><subject>low <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">VDD</subject><subject>Low noise</subject><subject>low power</subject><subject>low supply voltage</subject><subject>Microwave amplifiers</subject><subject>millimeter-wave (mmWave)</subject><subject>neutralized common-source</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Power consumption</subject><subject>Power gain</subject><subject>Resistors</subject><subject>Semiconductor device measurement</subject><subject>Stability analysis</subject><subject>Topology</subject><subject>Transformers</subject><subject>Voltage</subject><subject>Wireless communication</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjV1LwzAYhYMoOKc_QLwJeJ365qNJc7l1fkG3gY7tsqRtApldO9MW0V9vZZ6b51w8nIPQLYWIUtAP2XKXRgwYjTjIkeoMTWgcJ4QqKc7_OqeEctCX6Krr9gBUJIJO0NsMQyTJFm8XC7wjc9NUeGWHPpja_9gKL7xzNtim96bGWfuFV63vLJ4djrV33gbsG8wS0hzwfKg_cLpcv1-jC2fqzt78c4o2T4-b9IVk6-fXdJYRLxIgprS60iAMU6agnMWlcWKMjpmTVVEYZWSiCs3BFHElKyhLJ0FDXGrpnJB8iu5Ps8fQfg626_N9O4RmfMxZzJgGRRMYrbuT5a21-TH4gwnfueaSM674L3kQVzI</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Liang, Chia-Jen</creator><creator>Chiang, Ching-Wen</creator><creator>Zhou, Jia</creator><creator>Huang, Rulin</creator><creator>Wen, Kuei-Ann</creator><creator>Frank Chang, Mau-Chung</creator><creator>Kuan, Yen-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9887-1124</orcidid><orcidid>https://orcid.org/0000-0001-7026-4595</orcidid><orcidid>https://orcid.org/0000-0003-1347-892X</orcidid><orcidid>https://orcid.org/0000-0002-2501-1043</orcidid></search><sort><creationdate>202105</creationdate><title>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</title><author>Liang, Chia-Jen ; Chiang, Ching-Wen ; Zhou, Jia ; Huang, Rulin ; Wen, Kuei-Ann ; Frank Chang, Mau-Chung ; Kuan, Yen-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i480-ace9d904a27ab1325caf4444952f6dbba7a687b930ab5d6d0ccf60905c96ff463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>28-nm bulk CMOS</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band</topic><topic>Amplification</topic><topic>Amplifiers</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Coils</topic><topic>differential low noise amplifier (LNA)</topic><topic>Electric potential</topic><topic>Gain</topic><topic>High gain</topic><topic>low <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">VDD</topic><topic>Low noise</topic><topic>low power</topic><topic>low supply voltage</topic><topic>Microwave amplifiers</topic><topic>millimeter-wave (mmWave)</topic><topic>neutralized common-source</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Power consumption</topic><topic>Power gain</topic><topic>Resistors</topic><topic>Semiconductor device measurement</topic><topic>Stability analysis</topic><topic>Topology</topic><topic>Transformers</topic><topic>Voltage</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Chia-Jen</creatorcontrib><creatorcontrib>Chiang, Ching-Wen</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Huang, Rulin</creatorcontrib><creatorcontrib>Wen, Kuei-Ann</creatorcontrib><creatorcontrib>Frank Chang, Mau-Chung</creatorcontrib><creatorcontrib>Kuan, Yen-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Chia-Jen</au><au>Chiang, Ching-Wen</au><au>Zhou, Jia</au><au>Huang, Rulin</au><au>Wen, Kuei-Ann</au><au>Frank Chang, Mau-Chung</au><au>Kuan, Yen-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2021-05</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>481</spage><epage>484</epage><pages>481-484</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract><![CDATA[This letter presents a <inline-formula> <tex-math notation="LaTeX">{W} </tex-math></inline-formula>-band low-power and high-gain differential low noise amplifier (LNA) fabricated in 28-nm bulk CMOS technology. This LNA operates at a 0.6-V supply voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathbf {DD}} </tex-math></inline-formula>) to achieve low power consumption and respond to the low-voltage regime anticipated in future CMOS technology nodes. To obtain sufficient voltage headroom and mitigate the Miller effect, this LNA employs neutralized common source (CS) instead of cascode topology in each stage. The common-mode instability introduced by CS neutralization is reduced by making the secondary coil of each transformer (except the final one) center-tapped with resistors. The stability factor (K) and measure (B1) at a single-stage common mode are improved from 0.59 to 126 and from −0.14 to 0.6, respectively. In addition, each stage of this LNA uses only one transformer for conjugate matching, without any capacitor to minimize the passive loss. This LNA consists of five stages and achieves a power gain of 25 dB over 81-91 GHz (BW 3dB ) and a minimum noise figure (NF) of 6 dB at 85 GHz with power consumption of 15 mW and a silicon core area of 0.19 mm 2 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LMWC.2021.3062027</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9887-1124</orcidid><orcidid>https://orcid.org/0000-0001-7026-4595</orcidid><orcidid>https://orcid.org/0000-0003-1347-892X</orcidid><orcidid>https://orcid.org/0000-0002-2501-1043</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1531-1309 |
ispartof | IEEE microwave and wireless components letters, 2021-05, Vol.31 (5), p.481-484 |
issn | 1531-1309 2771-957X 1558-1764 2771-9588 |
language | eng |
recordid | cdi_ieee_primary_9363237 |
source | IEEE Electronic Library (IEL) |
subjects | 28-nm bulk CMOS <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band Amplification Amplifiers CMOS CMOS technology Coils differential low noise amplifier (LNA) Electric potential Gain High gain low <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">VDD Low noise low power low supply voltage Microwave amplifiers millimeter-wave (mmWave) neutralized common-source Noise measurement Noise reduction Power consumption Power gain Resistors Semiconductor device measurement Stability analysis Topology Transformers Voltage Wireless communication |
title | A 0.6-V VDD W-Band Neutralized Differential Low Noise Amplifier in 28-nm Bulk CMOS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.6-V%20VDD%20W-Band%20Neutralized%20Differential%20Low%20Noise%20Amplifier%20in%2028-nm%20Bulk%20CMOS&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Liang,%20Chia-Jen&rft.date=2021-05&rft.volume=31&rft.issue=5&rft.spage=481&rft.epage=484&rft.pages=481-484&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2021.3062027&rft_dat=%3Cproquest_RIE%3E2522907180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522907180&rft_id=info:pmid/&rft_ieee_id=9363237&rfr_iscdi=true |