Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing
With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources whi...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2021-06, Vol.29 (3), p.1022-1031 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1031 |
---|---|
container_issue | 3 |
container_start_page | 1022 |
container_title | IEEE/ACM transactions on networking |
container_volume | 29 |
creator | Yang, Chien-Sheng Pedarsani, Ramtin Avestimehr, A. Salman |
description | With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. We consider the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume that each computation job can be partitioned to smaller Map functions which are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality of each edge device as function of context. The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. By leveraging the coded computing framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called online coded edge computing policy , which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem. In terms of the cumulative reward, it is shown that the online coded edge computing policy significantly outperforms other benchmarks via numerical studies. |
doi_str_mv | 10.1109/TNET.2021.3058685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9361989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9361989</ieee_id><sourcerecordid>2541469356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a05e40096b7ee999f6c1d3cd1fb6b2194ebd638f386647ff5544bb1a38affaf23</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFZ_gHhZ8Jy6n9OsN431A4pe6sXLsklma2qb1M1G9N-b0KKXmWF43hl4CDnnbMI5M1eL59liIpjgE8l0Cqk-ICOudZoIDXDYzwxkAmDEMTlp2xVjXDIBI_I2K5dIs2az7WJVL2lV0_iO9M6Fj2s6xy8Mbjnss6aO-B07t056OK9qF5tQuTW9dXVZRdrXnimx_L91So68W7d4tu9j8no_W2SPyfzl4Sm7mSeFlBATxzQqxgzkU0RjjIeCl7Iouc8hF9wozEuQqZcpgJp6r7VSec6dTJ33zgs5Jpe7u9vQfHbYRrtqulD3L63QiiswUkNP8R1VhKZtA3q7DdXGhR_LmR0U2kGhHRTavcI-c7HLVIj4xxsJ3KRG_gLbAW1V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541469356</pqid></control><display><type>article</type><title>Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Chien-Sheng ; Pedarsani, Ramtin ; Avestimehr, A. Salman</creator><creatorcontrib>Yang, Chien-Sheng ; Pedarsani, Ramtin ; Avestimehr, A. Salman</creatorcontrib><description>With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. We consider the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume that each computation job can be partitioned to smaller Map functions which are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality of each edge device as function of context. The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. By leveraging the coded computing framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called online coded edge computing policy , which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem. In terms of the cumulative reward, it is shown that the online coded edge computing policy significantly outperforms other benchmarks via numerical studies.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3058685</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cloud computing ; coded computing ; Combinatorial analysis ; Computation offloading ; Computational modeling ; Context modeling ; Edge computing ; Encoding ; IEEE transactions ; Multi-armed bandit problems ; multi-armed bandits ; online learning ; Processor scheduling ; Quality of service ; Task analysis</subject><ispartof>IEEE/ACM transactions on networking, 2021-06, Vol.29 (3), p.1022-1031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a05e40096b7ee999f6c1d3cd1fb6b2194ebd638f386647ff5544bb1a38affaf23</citedby><cites>FETCH-LOGICAL-c336t-a05e40096b7ee999f6c1d3cd1fb6b2194ebd638f386647ff5544bb1a38affaf23</cites><orcidid>0000-0002-3753-8491 ; 0000-0002-1126-0292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9361989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9361989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Chien-Sheng</creatorcontrib><creatorcontrib>Pedarsani, Ramtin</creatorcontrib><creatorcontrib>Avestimehr, A. Salman</creatorcontrib><title>Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. We consider the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume that each computation job can be partitioned to smaller Map functions which are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality of each edge device as function of context. The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. By leveraging the coded computing framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called online coded edge computing policy , which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem. In terms of the cumulative reward, it is shown that the online coded edge computing policy significantly outperforms other benchmarks via numerical studies.</description><subject>Cloud computing</subject><subject>coded computing</subject><subject>Combinatorial analysis</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Context modeling</subject><subject>Edge computing</subject><subject>Encoding</subject><subject>IEEE transactions</subject><subject>Multi-armed bandit problems</subject><subject>multi-armed bandits</subject><subject>online learning</subject><subject>Processor scheduling</subject><subject>Quality of service</subject><subject>Task analysis</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AQhhdRsFZ_gHhZ8Jy6n9OsN431A4pe6sXLsklma2qb1M1G9N-b0KKXmWF43hl4CDnnbMI5M1eL59liIpjgE8l0Cqk-ICOudZoIDXDYzwxkAmDEMTlp2xVjXDIBI_I2K5dIs2az7WJVL2lV0_iO9M6Fj2s6xy8Mbjnss6aO-B07t056OK9qF5tQuTW9dXVZRdrXnimx_L91So68W7d4tu9j8no_W2SPyfzl4Sm7mSeFlBATxzQqxgzkU0RjjIeCl7Iouc8hF9wozEuQqZcpgJp6r7VSec6dTJ33zgs5Jpe7u9vQfHbYRrtqulD3L63QiiswUkNP8R1VhKZtA3q7DdXGhR_LmR0U2kGhHRTavcI-c7HLVIj4xxsJ3KRG_gLbAW1V</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Yang, Chien-Sheng</creator><creator>Pedarsani, Ramtin</creator><creator>Avestimehr, A. Salman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3753-8491</orcidid><orcidid>https://orcid.org/0000-0002-1126-0292</orcidid></search><sort><creationdate>202106</creationdate><title>Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing</title><author>Yang, Chien-Sheng ; Pedarsani, Ramtin ; Avestimehr, A. Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a05e40096b7ee999f6c1d3cd1fb6b2194ebd638f386647ff5544bb1a38affaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cloud computing</topic><topic>coded computing</topic><topic>Combinatorial analysis</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Context modeling</topic><topic>Edge computing</topic><topic>Encoding</topic><topic>IEEE transactions</topic><topic>Multi-armed bandit problems</topic><topic>multi-armed bandits</topic><topic>online learning</topic><topic>Processor scheduling</topic><topic>Quality of service</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chien-Sheng</creatorcontrib><creatorcontrib>Pedarsani, Ramtin</creatorcontrib><creatorcontrib>Avestimehr, A. Salman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Chien-Sheng</au><au>Pedarsani, Ramtin</au><au>Avestimehr, A. Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2021-06</date><risdate>2021</risdate><volume>29</volume><issue>3</issue><spage>1022</spage><epage>1031</epage><pages>1022-1031</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. We consider the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume that each computation job can be partitioned to smaller Map functions which are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality of each edge device as function of context. The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. By leveraging the coded computing framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called online coded edge computing policy , which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem. In terms of the cumulative reward, it is shown that the online coded edge computing policy significantly outperforms other benchmarks via numerical studies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3058685</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3753-8491</orcidid><orcidid>https://orcid.org/0000-0002-1126-0292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2021-06, Vol.29 (3), p.1022-1031 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_ieee_primary_9361989 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing coded computing Combinatorial analysis Computation offloading Computational modeling Context modeling Edge computing Encoding IEEE transactions Multi-armed bandit problems multi-armed bandits online learning Processor scheduling Quality of service Task analysis |
title | Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Computing%20in%20the%20Dark:%20Leveraging%20Contextual-Combinatorial%20Bandit%20and%20Coded%20Computing&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Yang,%20Chien-Sheng&rft.date=2021-06&rft.volume=29&rft.issue=3&rft.spage=1022&rft.epage=1031&rft.pages=1022-1031&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3058685&rft_dat=%3Cproquest_RIE%3E2541469356%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541469356&rft_id=info:pmid/&rft_ieee_id=9361989&rfr_iscdi=true |