Online Convex Optimization With Binary Constraints

We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent ( bOGD ) and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2021-12, Vol.66 (12), p.6164-6170
Hauptverfasser: Lesage-Landry, Antoine, Taylor, Joshua A., Callaway, Duncan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6170
container_issue 12
container_start_page 6164
container_title IEEE transactions on automatic control
container_volume 66
creator Lesage-Landry, Antoine
Taylor, Joshua A.
Callaway, Duncan S.
description We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent ( bOGD ) and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizons. First, we present the regret as the sum of the relaxed, continuous round optimum tracking error, and the rounding error of our update in which the former asymptomatically decreases with time under certain conditions. Then, we derive a finite-time bound that is sublinear in time and linear in the cumulative variation of the relaxed, continuous round optima. We apply bOGD to demand response with thermostatically controlled loads, in which binary constraints model discrete on/off settings. We also model uncertainty and varying load availability, which depend on temperature deadbands, lockout of cooling units and manual overrides. We test the performance of bOGD in several simulations based on demand response. The simulations corroborate that the use of randomization in bOGD does not significantly degrade performance while making the problem more tractable.
doi_str_mv 10.1109/TAC.2021.3061625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9361268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9361268</ieee_id><sourcerecordid>2605712002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8c4f1357a51cf269c641d08f0b3dbb4b2531527d4954b36dde6db9262a19e1ac3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMouFbvgpcFz1szk4_dHOtiVSj0UvEYsrtZTGmzNUlF_fVuafE0DPO8M8NDyC3QKQBVD6tZPUWKMGVUgkRxRjIQoipQIDsnGaVQFQoreUmuYlyPreQcMoJLv3He5vXgv-x3vtwlt3W_JrnB5-8ufeSPzpvwc5jHFIzzKV6Ti95sor051Ql5mz-t6pdisXx-rWeLomWMpaJqeQ9MlEZA26NUreTQ0aqnDeuahjcoGAgsO64Eb5jsOiu7RqFEA8qCadmE3B_37sLwubcx6fWwD348qVFSUQJSiiNFj1QbhhiD7fUuuO34sgaqD2b0aEYfzOiTmTFyd4w4a-0_rpgElBX7A07PXaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605712002</pqid></control><display><type>article</type><title>Online Convex Optimization With Binary Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Lesage-Landry, Antoine ; Taylor, Joshua A. ; Callaway, Duncan S.</creator><creatorcontrib>Lesage-Landry, Antoine ; Taylor, Joshua A. ; Callaway, Duncan S.</creatorcontrib><description>We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent ( bOGD ) and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizons. First, we present the regret as the sum of the relaxed, continuous round optimum tracking error, and the rounding error of our update in which the former asymptomatically decreases with time under certain conditions. Then, we derive a finite-time bound that is sublinear in time and linear in the cumulative variation of the relaxed, continuous round optima. We apply bOGD to demand response with thermostatically controlled loads, in which binary constraints model discrete on/off settings. We also model uncertainty and varying load availability, which depend on temperature deadbands, lockout of cooling units and manual overrides. We test the performance of bOGD in several simulations based on demand response. The simulations corroborate that the use of randomization in bOGD does not significantly degrade performance while making the problem more tractable.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3061625</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Binary decision ; Computational geometry ; Constraint modelling ; Convex functions ; Convexity ; Decision theory ; Demand response ; dynamic regret ; online convex optimization ; Optimization ; Performance degradation ; Rounding ; thermostatically controlled loads ; Tracking errors</subject><ispartof>IEEE transactions on automatic control, 2021-12, Vol.66 (12), p.6164-6170</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8c4f1357a51cf269c641d08f0b3dbb4b2531527d4954b36dde6db9262a19e1ac3</citedby><cites>FETCH-LOGICAL-c333t-8c4f1357a51cf269c641d08f0b3dbb4b2531527d4954b36dde6db9262a19e1ac3</cites><orcidid>0000-0003-3316-9008 ; 0000-0001-9652-6557 ; 0000-0002-1304-9845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9361268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9361268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lesage-Landry, Antoine</creatorcontrib><creatorcontrib>Taylor, Joshua A.</creatorcontrib><creatorcontrib>Callaway, Duncan S.</creatorcontrib><title>Online Convex Optimization With Binary Constraints</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent ( bOGD ) and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizons. First, we present the regret as the sum of the relaxed, continuous round optimum tracking error, and the rounding error of our update in which the former asymptomatically decreases with time under certain conditions. Then, we derive a finite-time bound that is sublinear in time and linear in the cumulative variation of the relaxed, continuous round optima. We apply bOGD to demand response with thermostatically controlled loads, in which binary constraints model discrete on/off settings. We also model uncertainty and varying load availability, which depend on temperature deadbands, lockout of cooling units and manual overrides. We test the performance of bOGD in several simulations based on demand response. The simulations corroborate that the use of randomization in bOGD does not significantly degrade performance while making the problem more tractable.</description><subject>Algorithms</subject><subject>Binary decision</subject><subject>Computational geometry</subject><subject>Constraint modelling</subject><subject>Convex functions</subject><subject>Convexity</subject><subject>Decision theory</subject><subject>Demand response</subject><subject>dynamic regret</subject><subject>online convex optimization</subject><subject>Optimization</subject><subject>Performance degradation</subject><subject>Rounding</subject><subject>thermostatically controlled loads</subject><subject>Tracking errors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMouFbvgpcFz1szk4_dHOtiVSj0UvEYsrtZTGmzNUlF_fVuafE0DPO8M8NDyC3QKQBVD6tZPUWKMGVUgkRxRjIQoipQIDsnGaVQFQoreUmuYlyPreQcMoJLv3He5vXgv-x3vtwlt3W_JrnB5-8ufeSPzpvwc5jHFIzzKV6Ti95sor051Ql5mz-t6pdisXx-rWeLomWMpaJqeQ9MlEZA26NUreTQ0aqnDeuahjcoGAgsO64Eb5jsOiu7RqFEA8qCadmE3B_37sLwubcx6fWwD348qVFSUQJSiiNFj1QbhhiD7fUuuO34sgaqD2b0aEYfzOiTmTFyd4w4a-0_rpgElBX7A07PXaE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lesage-Landry, Antoine</creator><creator>Taylor, Joshua A.</creator><creator>Callaway, Duncan S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3316-9008</orcidid><orcidid>https://orcid.org/0000-0001-9652-6557</orcidid><orcidid>https://orcid.org/0000-0002-1304-9845</orcidid></search><sort><creationdate>20211201</creationdate><title>Online Convex Optimization With Binary Constraints</title><author>Lesage-Landry, Antoine ; Taylor, Joshua A. ; Callaway, Duncan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8c4f1357a51cf269c641d08f0b3dbb4b2531527d4954b36dde6db9262a19e1ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Binary decision</topic><topic>Computational geometry</topic><topic>Constraint modelling</topic><topic>Convex functions</topic><topic>Convexity</topic><topic>Decision theory</topic><topic>Demand response</topic><topic>dynamic regret</topic><topic>online convex optimization</topic><topic>Optimization</topic><topic>Performance degradation</topic><topic>Rounding</topic><topic>thermostatically controlled loads</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesage-Landry, Antoine</creatorcontrib><creatorcontrib>Taylor, Joshua A.</creatorcontrib><creatorcontrib>Callaway, Duncan S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lesage-Landry, Antoine</au><au>Taylor, Joshua A.</au><au>Callaway, Duncan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Convex Optimization With Binary Constraints</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>66</volume><issue>12</issue><spage>6164</spage><epage>6170</epage><pages>6164-6170</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider online optimization with binary decision variables and convex loss functions. We design a new algorithm, binary online gradient descent ( bOGD ) and bound its expected dynamic regret. We provide a regret bound that holds for any time horizon and a specialized bound for finite time horizons. First, we present the regret as the sum of the relaxed, continuous round optimum tracking error, and the rounding error of our update in which the former asymptomatically decreases with time under certain conditions. Then, we derive a finite-time bound that is sublinear in time and linear in the cumulative variation of the relaxed, continuous round optima. We apply bOGD to demand response with thermostatically controlled loads, in which binary constraints model discrete on/off settings. We also model uncertainty and varying load availability, which depend on temperature deadbands, lockout of cooling units and manual overrides. We test the performance of bOGD in several simulations based on demand response. The simulations corroborate that the use of randomization in bOGD does not significantly degrade performance while making the problem more tractable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3061625</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3316-9008</orcidid><orcidid>https://orcid.org/0000-0001-9652-6557</orcidid><orcidid>https://orcid.org/0000-0002-1304-9845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2021-12, Vol.66 (12), p.6164-6170
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_9361268
source IEEE Electronic Library (IEL)
subjects Algorithms
Binary decision
Computational geometry
Constraint modelling
Convex functions
Convexity
Decision theory
Demand response
dynamic regret
online convex optimization
Optimization
Performance degradation
Rounding
thermostatically controlled loads
Tracking errors
title Online Convex Optimization With Binary Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Convex%20Optimization%20With%20Binary%20Constraints&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Lesage-Landry,%20Antoine&rft.date=2021-12-01&rft.volume=66&rft.issue=12&rft.spage=6164&rft.epage=6170&rft.pages=6164-6170&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3061625&rft_dat=%3Cproquest_RIE%3E2605712002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605712002&rft_id=info:pmid/&rft_ieee_id=9361268&rfr_iscdi=true