AS-NAS: Adaptive Scalable Neural Architecture Search With Reinforced Evolutionary Algorithm for Deep Learning

Neural architecture search (NAS) is a challenging problem in the design of deep learning due to its nonconvexity. To address this problem, an adaptive scalable NAS method (AS-NAS) is proposed based on the reinforced I-Ching divination evolutionary algorithm (IDEA) and variable-architecture encoding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2021-10, Vol.25 (5), p.830-841
Hauptverfasser: Zhang, Tong, Lei, Chunyu, Zhang, Zongyan, Meng, Xian-Bing, Chen, C. L. Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!