AS-NAS: Adaptive Scalable Neural Architecture Search With Reinforced Evolutionary Algorithm for Deep Learning
Neural architecture search (NAS) is a challenging problem in the design of deep learning due to its nonconvexity. To address this problem, an adaptive scalable NAS method (AS-NAS) is proposed based on the reinforced I-Ching divination evolutionary algorithm (IDEA) and variable-architecture encoding...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2021-10, Vol.25 (5), p.830-841 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!