Learning Collision-Free Space Detection From Stereo Images: Homography Matrix Brings Better Data Augmentation

Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised deep learning. Their performance is dependent on the quality and amount of labeled training data. It remains an open challenge to train deep conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2022-02, Vol.27 (1), p.225-233
Hauptverfasser: Fan, Rui, Wang, Hengli, Cai, Peide, Wu, Jin, Bocus, Mohammud Junaid, Qiao, Lei, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 1
container_start_page 225
container_title IEEE/ASME transactions on mechatronics
container_volume 27
creator Fan, Rui
Wang, Hengli
Cai, Peide
Wu, Jin
Bocus, Mohammud Junaid
Qiao, Lei
Liu, Ming
description Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised deep learning. Their performance is dependent on the quality and amount of labeled training data. It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples. Therefore, in this article, we mainly explore an effective training data augmentation approach that can be employed to improve the overall DCNN performance, when additional images captured from different views are available. Due to the fact that the pixels in collision-free space (generally regarded as a planar surface) between two images, captured from different views, can be associated using a homography matrix, the target image can be transformed into the reference view. This provides a simple but effective way to generate training data from additional multiview images. Extensive experimental results, conducted with six state-of-the-art semantic segmentation DCNNs on three datasets, validate the effectiveness of the proposed method for enhancing collision-free space detection performance. When validated on the KITTI road benchmark, our approach provides the best results, compared with other state-of-the-art stereo vision-based collision-free space detection approaches.
doi_str_mv 10.1109/TMECH.2021.3061077
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9360504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9360504</ieee_id><sourcerecordid>2629127097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d755293869943f7246ceb098c7467ae72d7fbc0234bd4c7676069a2b75eb7d953</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKt_QC8LnlNnP7Lb9dZPW2jx0ArewiadxpQmG3e3YP-9qS2eZhie9x14ouiRQo9S0C_r5WQ06zFgtMdBUlDqKupQLWgMVHxetzv0eSwET26jO-93ACAo0E5ULdC4uqwLMrL7felLW8dTh0hWjcmRjDFgHtojmTpbkVVAh5bMK1OgfyUzW9nCmebrSJYmuPKHDF1b5ckQQ0uSsQmGDA5FhXUwp5b76GZr9h4fLrMbfUwn69EsXry_zUeDRZwznYR4o5KEad6XWgu-VUzIHDPQ_VwJqQwqtlHbLAfGRbYRuZJKgtSGZSrBTG10wrvR87m3cfb7gD6kO3twdfsyZZJpyhRo1VLsTOXOeu9wmzaurIw7phTSk9b0T2t60ppetLahp3OoRMT_gOYSEhD8F8JEc4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629127097</pqid></control><display><type>article</type><title>Learning Collision-Free Space Detection From Stereo Images: Homography Matrix Brings Better Data Augmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Rui ; Wang, Hengli ; Cai, Peide ; Wu, Jin ; Bocus, Mohammud Junaid ; Qiao, Lei ; Liu, Ming</creator><creatorcontrib>Fan, Rui ; Wang, Hengli ; Cai, Peide ; Wu, Jin ; Bocus, Mohammud Junaid ; Qiao, Lei ; Liu, Ming</creatorcontrib><description>Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised deep learning. Their performance is dependent on the quality and amount of labeled training data. It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples. Therefore, in this article, we mainly explore an effective training data augmentation approach that can be employed to improve the overall DCNN performance, when additional images captured from different views are available. Due to the fact that the pixels in collision-free space (generally regarded as a planar surface) between two images, captured from different views, can be associated using a homography matrix, the target image can be transformed into the reference view. This provides a simple but effective way to generate training data from additional multiview images. Extensive experimental results, conducted with six state-of-the-art semantic segmentation DCNNs on three datasets, validate the effectiveness of the proposed method for enhancing collision-free space detection performance. When validated on the KITTI road benchmark, our approach provides the best results, compared with other state-of-the-art stereo vision-based collision-free space detection approaches.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2021.3061077</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cameras ; Collision avoidance ; Collision-free space detection ; Critical components ; Data augmentation ; Deep learning ; homography matrix ; Image segmentation ; Machine learning ; Mechatronics ; Roads ; Semantics ; supervised deep learning ; Three-dimensional displays ; Training ; Training data ; Transmission line matrix methods</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-02, Vol.27 (1), p.225-233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d755293869943f7246ceb098c7467ae72d7fbc0234bd4c7676069a2b75eb7d953</citedby><cites>FETCH-LOGICAL-c295t-d755293869943f7246ceb098c7467ae72d7fbc0234bd4c7676069a2b75eb7d953</cites><orcidid>0000-0003-2593-6596 ; 0000-0002-9759-2991 ; 0000-0002-7515-9759 ; 0000-0001-7843-3445 ; 0000-0002-4500-238X ; 0000-0001-9922-7595 ; 0000-0001-5930-4170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9360504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9360504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Wang, Hengli</creatorcontrib><creatorcontrib>Cai, Peide</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Bocus, Mohammud Junaid</creatorcontrib><creatorcontrib>Qiao, Lei</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Learning Collision-Free Space Detection From Stereo Images: Homography Matrix Brings Better Data Augmentation</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised deep learning. Their performance is dependent on the quality and amount of labeled training data. It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples. Therefore, in this article, we mainly explore an effective training data augmentation approach that can be employed to improve the overall DCNN performance, when additional images captured from different views are available. Due to the fact that the pixels in collision-free space (generally regarded as a planar surface) between two images, captured from different views, can be associated using a homography matrix, the target image can be transformed into the reference view. This provides a simple but effective way to generate training data from additional multiview images. Extensive experimental results, conducted with six state-of-the-art semantic segmentation DCNNs on three datasets, validate the effectiveness of the proposed method for enhancing collision-free space detection performance. When validated on the KITTI road benchmark, our approach provides the best results, compared with other state-of-the-art stereo vision-based collision-free space detection approaches.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Collision avoidance</subject><subject>Collision-free space detection</subject><subject>Critical components</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>homography matrix</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Roads</subject><subject>Semantics</subject><subject>supervised deep learning</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Training data</subject><subject>Transmission line matrix methods</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKt_QC8LnlNnP7Lb9dZPW2jx0ArewiadxpQmG3e3YP-9qS2eZhie9x14ouiRQo9S0C_r5WQ06zFgtMdBUlDqKupQLWgMVHxetzv0eSwET26jO-93ACAo0E5ULdC4uqwLMrL7felLW8dTh0hWjcmRjDFgHtojmTpbkVVAh5bMK1OgfyUzW9nCmebrSJYmuPKHDF1b5ckQQ0uSsQmGDA5FhXUwp5b76GZr9h4fLrMbfUwn69EsXry_zUeDRZwznYR4o5KEad6XWgu-VUzIHDPQ_VwJqQwqtlHbLAfGRbYRuZJKgtSGZSrBTG10wrvR87m3cfb7gD6kO3twdfsyZZJpyhRo1VLsTOXOeu9wmzaurIw7phTSk9b0T2t60ppetLahp3OoRMT_gOYSEhD8F8JEc4I</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Fan, Rui</creator><creator>Wang, Hengli</creator><creator>Cai, Peide</creator><creator>Wu, Jin</creator><creator>Bocus, Mohammud Junaid</creator><creator>Qiao, Lei</creator><creator>Liu, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2593-6596</orcidid><orcidid>https://orcid.org/0000-0002-9759-2991</orcidid><orcidid>https://orcid.org/0000-0002-7515-9759</orcidid><orcidid>https://orcid.org/0000-0001-7843-3445</orcidid><orcidid>https://orcid.org/0000-0002-4500-238X</orcidid><orcidid>https://orcid.org/0000-0001-9922-7595</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid></search><sort><creationdate>202202</creationdate><title>Learning Collision-Free Space Detection From Stereo Images: Homography Matrix Brings Better Data Augmentation</title><author>Fan, Rui ; Wang, Hengli ; Cai, Peide ; Wu, Jin ; Bocus, Mohammud Junaid ; Qiao, Lei ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d755293869943f7246ceb098c7467ae72d7fbc0234bd4c7676069a2b75eb7d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Collision avoidance</topic><topic>Collision-free space detection</topic><topic>Critical components</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>homography matrix</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Roads</topic><topic>Semantics</topic><topic>supervised deep learning</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Training data</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Rui</creatorcontrib><creatorcontrib>Wang, Hengli</creatorcontrib><creatorcontrib>Cai, Peide</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Bocus, Mohammud Junaid</creatorcontrib><creatorcontrib>Qiao, Lei</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Rui</au><au>Wang, Hengli</au><au>Cai, Peide</au><au>Wu, Jin</au><au>Bocus, Mohammud Junaid</au><au>Qiao, Lei</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Collision-Free Space Detection From Stereo Images: Homography Matrix Brings Better Data Augmentation</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-02</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>225</spage><epage>233</epage><pages>225-233</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Collision-free space detection is a critical component of autonomous vehicle perception. The state-of-the-art algorithms are typically based on supervised deep learning. Their performance is dependent on the quality and amount of labeled training data. It remains an open challenge to train deep convolutional neural networks (DCNNs) using only a small quantity of training samples. Therefore, in this article, we mainly explore an effective training data augmentation approach that can be employed to improve the overall DCNN performance, when additional images captured from different views are available. Due to the fact that the pixels in collision-free space (generally regarded as a planar surface) between two images, captured from different views, can be associated using a homography matrix, the target image can be transformed into the reference view. This provides a simple but effective way to generate training data from additional multiview images. Extensive experimental results, conducted with six state-of-the-art semantic segmentation DCNNs on three datasets, validate the effectiveness of the proposed method for enhancing collision-free space detection performance. When validated on the KITTI road benchmark, our approach provides the best results, compared with other state-of-the-art stereo vision-based collision-free space detection approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2021.3061077</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2593-6596</orcidid><orcidid>https://orcid.org/0000-0002-9759-2991</orcidid><orcidid>https://orcid.org/0000-0002-7515-9759</orcidid><orcidid>https://orcid.org/0000-0001-7843-3445</orcidid><orcidid>https://orcid.org/0000-0002-4500-238X</orcidid><orcidid>https://orcid.org/0000-0001-9922-7595</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2022-02, Vol.27 (1), p.225-233
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_9360504
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Cameras
Collision avoidance
Collision-free space detection
Critical components
Data augmentation
Deep learning
homography matrix
Image segmentation
Machine learning
Mechatronics
Roads
Semantics
supervised deep learning
Three-dimensional displays
Training
Training data
Transmission line matrix methods
title Learning Collision-Free Space Detection From Stereo Images: Homography Matrix Brings Better Data Augmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Collision-Free%20Space%20Detection%20From%20Stereo%20Images:%20Homography%20Matrix%20Brings%20Better%20Data%20Augmentation&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Fan,%20Rui&rft.date=2022-02&rft.volume=27&rft.issue=1&rft.spage=225&rft.epage=233&rft.pages=225-233&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2021.3061077&rft_dat=%3Cproquest_RIE%3E2629127097%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629127097&rft_id=info:pmid/&rft_ieee_id=9360504&rfr_iscdi=true