Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies

Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of \mathrm{\Delta }E< 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2021-08, Vol.31 (5), p.1-5
Hauptverfasser: Taralli, Emanuele, D'Andrea, Matteo, Gottardi, Luciano, Nagayoshi, Kenishiro, Ridder, Marcel, de Wit, Martin, Visser, Sven, Vaccaro, Davide, Akamatsu, Hiroki, Ravensberg, Kevin, Hoogeveen, Ruud, Bruijn, Marcel, Gao, Jian-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 31
creator Taralli, Emanuele
D'Andrea, Matteo
Gottardi, Luciano
Nagayoshi, Kenishiro
Ridder, Marcel
de Wit, Martin
Visser, Sven
Vaccaro, Davide
Akamatsu, Hiroki
Ravensberg, Kevin
Hoogeveen, Ruud
Bruijn, Marcel
Gao, Jian-Rong
description Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of \mathrm{\Delta }E< 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 \mum^2 TiAu TESs, which have a 2.3 \mum thick Au absorber for X-ray photons. The pixels have a typical normal resistance R_{\mathrm{n}} = 121 m\Omega and a critical temperature T_{\mathrm{c}}\sim 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1\;\times\; 10^{-3} when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).
doi_str_mv 10.1109/TASC.2021.3061022
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9360474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9360474</ieee_id><sourcerecordid>2503499837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</originalsourceid><addsrcrecordid>eNo9kM1Kw0AQgBdRsFYfQLwseDXt7F-68RZi_QHBYlPwtmw3u7q1TeomBfMkPpAvZkKLl5lh-GaG-RC6JDAiBJJxns6zEQVKRgxiApQeoQERQkZUEHHc1SBIJCllp-isrlcAhEsuBsjnfpzucD6dY0bx708fZ_7brnEagm5v8aL0rgob37Q3OP-wYaPXOAtVXTd6_Yl1WeCZDT2hS2OxbvCdd84GWzb4LXrVLZ6WNrx7W5-jE6fXtb045CFa3E_z7DF6fnl4ytLnyFCQTTQB4SihEAtZFJQaTQ3hkPCuxwumXWwk51pK6kyREBHHbGkIWy4hNjHTUrAhut7v3Ybqa2frRq2qXSi7k4oKYDxJJJt0FNlTpv8lWKe2wW90aBUB1RtVvVHVG1UHo93M1X7GW2v_-YTFwCec_QFDfm9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499837</pqid></control><display><type>article</type><title>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</title><source>IEEE Electronic Library (IEL)</source><creator>Taralli, Emanuele ; D'Andrea, Matteo ; Gottardi, Luciano ; Nagayoshi, Kenishiro ; Ridder, Marcel ; de Wit, Martin ; Visser, Sven ; Vaccaro, Davide ; Akamatsu, Hiroki ; Ravensberg, Kevin ; Hoogeveen, Ruud ; Bruijn, Marcel ; Gao, Jian-Rong</creator><creatorcontrib>Taralli, Emanuele ; D'Andrea, Matteo ; Gottardi, Luciano ; Nagayoshi, Kenishiro ; Ridder, Marcel ; de Wit, Martin ; Visser, Sven ; Vaccaro, Davide ; Akamatsu, Hiroki ; Ravensberg, Kevin ; Hoogeveen, Ruud ; Bruijn, Marcel ; Gao, Jian-Rong</creatorcontrib><description><![CDATA[Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of <inline-formula><tex-math notation="LaTeX">\mathrm{\Delta }E< </tex-math></inline-formula> 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> TiAu TESs, which have a 2.3 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m thick Au absorber for X-ray photons. The pixels have a typical normal resistance <inline-formula><tex-math notation="LaTeX">R_{\mathrm{n}}</tex-math></inline-formula> = 121 m<inline-formula><tex-math notation="LaTeX">\Omega</tex-math></inline-formula> and a critical temperature <inline-formula><tex-math notation="LaTeX">T_{\mathrm{c}}\sim</tex-math></inline-formula> 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1<inline-formula><tex-math notation="LaTeX">\;\times\; 10^{-3}</tex-math></inline-formula> when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).]]></description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3061022</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Critical temperature ; Crosstalk ; Detectors ; Energy resolution ; Frequency division multiplexing ; Histograms ; modulated x-ray source ; Observatories ; Photonics ; Photons ; Pixels ; Sensor arrays ; Soft x rays ; Space telescopes ; superconducting devices ; Temperature measurement ; X ray sources ; x-ray detectors</subject><ispartof>IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</citedby><cites>FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</cites><orcidid>0000-0001-7644-1548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9360474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9360474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taralli, Emanuele</creatorcontrib><creatorcontrib>D'Andrea, Matteo</creatorcontrib><creatorcontrib>Gottardi, Luciano</creatorcontrib><creatorcontrib>Nagayoshi, Kenishiro</creatorcontrib><creatorcontrib>Ridder, Marcel</creatorcontrib><creatorcontrib>de Wit, Martin</creatorcontrib><creatorcontrib>Visser, Sven</creatorcontrib><creatorcontrib>Vaccaro, Davide</creatorcontrib><creatorcontrib>Akamatsu, Hiroki</creatorcontrib><creatorcontrib>Ravensberg, Kevin</creatorcontrib><creatorcontrib>Hoogeveen, Ruud</creatorcontrib><creatorcontrib>Bruijn, Marcel</creatorcontrib><creatorcontrib>Gao, Jian-Rong</creatorcontrib><title>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description><![CDATA[Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of <inline-formula><tex-math notation="LaTeX">\mathrm{\Delta }E< </tex-math></inline-formula> 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> TiAu TESs, which have a 2.3 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m thick Au absorber for X-ray photons. The pixels have a typical normal resistance <inline-formula><tex-math notation="LaTeX">R_{\mathrm{n}}</tex-math></inline-formula> = 121 m<inline-formula><tex-math notation="LaTeX">\Omega</tex-math></inline-formula> and a critical temperature <inline-formula><tex-math notation="LaTeX">T_{\mathrm{c}}\sim</tex-math></inline-formula> 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1<inline-formula><tex-math notation="LaTeX">\;\times\; 10^{-3}</tex-math></inline-formula> when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).]]></description><subject>Arrays</subject><subject>Critical temperature</subject><subject>Crosstalk</subject><subject>Detectors</subject><subject>Energy resolution</subject><subject>Frequency division multiplexing</subject><subject>Histograms</subject><subject>modulated x-ray source</subject><subject>Observatories</subject><subject>Photonics</subject><subject>Photons</subject><subject>Pixels</subject><subject>Sensor arrays</subject><subject>Soft x rays</subject><subject>Space telescopes</subject><subject>superconducting devices</subject><subject>Temperature measurement</subject><subject>X ray sources</subject><subject>x-ray detectors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Kw0AQgBdRsFYfQLwseDXt7F-68RZi_QHBYlPwtmw3u7q1TeomBfMkPpAvZkKLl5lh-GaG-RC6JDAiBJJxns6zEQVKRgxiApQeoQERQkZUEHHc1SBIJCllp-isrlcAhEsuBsjnfpzucD6dY0bx708fZ_7brnEagm5v8aL0rgob37Q3OP-wYaPXOAtVXTd6_Yl1WeCZDT2hS2OxbvCdd84GWzb4LXrVLZ6WNrx7W5-jE6fXtb045CFa3E_z7DF6fnl4ytLnyFCQTTQB4SihEAtZFJQaTQ3hkPCuxwumXWwk51pK6kyREBHHbGkIWy4hNjHTUrAhut7v3Ybqa2frRq2qXSi7k4oKYDxJJJt0FNlTpv8lWKe2wW90aBUB1RtVvVHVG1UHo93M1X7GW2v_-YTFwCec_QFDfm9D</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Taralli, Emanuele</creator><creator>D'Andrea, Matteo</creator><creator>Gottardi, Luciano</creator><creator>Nagayoshi, Kenishiro</creator><creator>Ridder, Marcel</creator><creator>de Wit, Martin</creator><creator>Visser, Sven</creator><creator>Vaccaro, Davide</creator><creator>Akamatsu, Hiroki</creator><creator>Ravensberg, Kevin</creator><creator>Hoogeveen, Ruud</creator><creator>Bruijn, Marcel</creator><creator>Gao, Jian-Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7644-1548</orcidid></search><sort><creationdate>20210801</creationdate><title>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</title><author>Taralli, Emanuele ; D'Andrea, Matteo ; Gottardi, Luciano ; Nagayoshi, Kenishiro ; Ridder, Marcel ; de Wit, Martin ; Visser, Sven ; Vaccaro, Davide ; Akamatsu, Hiroki ; Ravensberg, Kevin ; Hoogeveen, Ruud ; Bruijn, Marcel ; Gao, Jian-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Critical temperature</topic><topic>Crosstalk</topic><topic>Detectors</topic><topic>Energy resolution</topic><topic>Frequency division multiplexing</topic><topic>Histograms</topic><topic>modulated x-ray source</topic><topic>Observatories</topic><topic>Photonics</topic><topic>Photons</topic><topic>Pixels</topic><topic>Sensor arrays</topic><topic>Soft x rays</topic><topic>Space telescopes</topic><topic>superconducting devices</topic><topic>Temperature measurement</topic><topic>X ray sources</topic><topic>x-ray detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taralli, Emanuele</creatorcontrib><creatorcontrib>D'Andrea, Matteo</creatorcontrib><creatorcontrib>Gottardi, Luciano</creatorcontrib><creatorcontrib>Nagayoshi, Kenishiro</creatorcontrib><creatorcontrib>Ridder, Marcel</creatorcontrib><creatorcontrib>de Wit, Martin</creatorcontrib><creatorcontrib>Visser, Sven</creatorcontrib><creatorcontrib>Vaccaro, Davide</creatorcontrib><creatorcontrib>Akamatsu, Hiroki</creatorcontrib><creatorcontrib>Ravensberg, Kevin</creatorcontrib><creatorcontrib>Hoogeveen, Ruud</creatorcontrib><creatorcontrib>Bruijn, Marcel</creatorcontrib><creatorcontrib>Gao, Jian-Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taralli, Emanuele</au><au>D'Andrea, Matteo</au><au>Gottardi, Luciano</au><au>Nagayoshi, Kenishiro</au><au>Ridder, Marcel</au><au>de Wit, Martin</au><au>Visser, Sven</au><au>Vaccaro, Davide</au><au>Akamatsu, Hiroki</au><au>Ravensberg, Kevin</au><au>Hoogeveen, Ruud</au><au>Bruijn, Marcel</au><au>Gao, Jian-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract><![CDATA[Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of <inline-formula><tex-math notation="LaTeX">\mathrm{\Delta }E< </tex-math></inline-formula> 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> TiAu TESs, which have a 2.3 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m thick Au absorber for X-ray photons. The pixels have a typical normal resistance <inline-formula><tex-math notation="LaTeX">R_{\mathrm{n}}</tex-math></inline-formula> = 121 m<inline-formula><tex-math notation="LaTeX">\Omega</tex-math></inline-formula> and a critical temperature <inline-formula><tex-math notation="LaTeX">T_{\mathrm{c}}\sim</tex-math></inline-formula> 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1<inline-formula><tex-math notation="LaTeX">\;\times\; 10^{-3}</tex-math></inline-formula> when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3061022</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7644-1548</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_9360474
source IEEE Electronic Library (IEL)
subjects Arrays
Critical temperature
Crosstalk
Detectors
Energy resolution
Frequency division multiplexing
Histograms
modulated x-ray source
Observatories
Photonics
Photons
Pixels
Sensor arrays
Soft x rays
Space telescopes
superconducting devices
Temperature measurement
X ray sources
x-ray detectors
title Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ti/Au%20TES%2032%20%C3%97%2032%20Pixel%20Array:%20Uniformity,%20Thermal%20Crosstalk%20and%20Performance%20at%20Different%20X-Ray%20Energies&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Taralli,%20Emanuele&rft.date=2021-08-01&rft.volume=31&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3061022&rft_dat=%3Cproquest_RIE%3E2503499837%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503499837&rft_id=info:pmid/&rft_ieee_id=9360474&rfr_iscdi=true