Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies
Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of \mathrm{\Delta }E< 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2021-08, Vol.31 (5), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 31 |
creator | Taralli, Emanuele D'Andrea, Matteo Gottardi, Luciano Nagayoshi, Kenishiro Ridder, Marcel de Wit, Martin Visser, Sven Vaccaro, Davide Akamatsu, Hiroki Ravensberg, Kevin Hoogeveen, Ruud Bruijn, Marcel Gao, Jian-Rong |
description | Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of \mathrm{\Delta }E< 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 \mum^2 TiAu TESs, which have a 2.3 \mum thick Au absorber for X-ray photons. The pixels have a typical normal resistance R_{\mathrm{n}} = 121 m\Omega and a critical temperature T_{\mathrm{c}}\sim 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1\;\times\; 10^{-3} when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV). |
doi_str_mv | 10.1109/TASC.2021.3061022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9360474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9360474</ieee_id><sourcerecordid>2503499837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</originalsourceid><addsrcrecordid>eNo9kM1Kw0AQgBdRsFYfQLwseDXt7F-68RZi_QHBYlPwtmw3u7q1TeomBfMkPpAvZkKLl5lh-GaG-RC6JDAiBJJxns6zEQVKRgxiApQeoQERQkZUEHHc1SBIJCllp-isrlcAhEsuBsjnfpzucD6dY0bx708fZ_7brnEagm5v8aL0rgob37Q3OP-wYaPXOAtVXTd6_Yl1WeCZDT2hS2OxbvCdd84GWzb4LXrVLZ6WNrx7W5-jE6fXtb045CFa3E_z7DF6fnl4ytLnyFCQTTQB4SihEAtZFJQaTQ3hkPCuxwumXWwk51pK6kyREBHHbGkIWy4hNjHTUrAhut7v3Ybqa2frRq2qXSi7k4oKYDxJJJt0FNlTpv8lWKe2wW90aBUB1RtVvVHVG1UHo93M1X7GW2v_-YTFwCec_QFDfm9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499837</pqid></control><display><type>article</type><title>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</title><source>IEEE Electronic Library (IEL)</source><creator>Taralli, Emanuele ; D'Andrea, Matteo ; Gottardi, Luciano ; Nagayoshi, Kenishiro ; Ridder, Marcel ; de Wit, Martin ; Visser, Sven ; Vaccaro, Davide ; Akamatsu, Hiroki ; Ravensberg, Kevin ; Hoogeveen, Ruud ; Bruijn, Marcel ; Gao, Jian-Rong</creator><creatorcontrib>Taralli, Emanuele ; D'Andrea, Matteo ; Gottardi, Luciano ; Nagayoshi, Kenishiro ; Ridder, Marcel ; de Wit, Martin ; Visser, Sven ; Vaccaro, Davide ; Akamatsu, Hiroki ; Ravensberg, Kevin ; Hoogeveen, Ruud ; Bruijn, Marcel ; Gao, Jian-Rong</creatorcontrib><description><![CDATA[Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of <inline-formula><tex-math notation="LaTeX">\mathrm{\Delta }E< </tex-math></inline-formula> 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> TiAu TESs, which have a 2.3 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m thick Au absorber for X-ray photons. The pixels have a typical normal resistance <inline-formula><tex-math notation="LaTeX">R_{\mathrm{n}}</tex-math></inline-formula> = 121 m<inline-formula><tex-math notation="LaTeX">\Omega</tex-math></inline-formula> and a critical temperature <inline-formula><tex-math notation="LaTeX">T_{\mathrm{c}}\sim</tex-math></inline-formula> 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1<inline-formula><tex-math notation="LaTeX">\;\times\; 10^{-3}</tex-math></inline-formula> when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).]]></description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3061022</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Critical temperature ; Crosstalk ; Detectors ; Energy resolution ; Frequency division multiplexing ; Histograms ; modulated x-ray source ; Observatories ; Photonics ; Photons ; Pixels ; Sensor arrays ; Soft x rays ; Space telescopes ; superconducting devices ; Temperature measurement ; X ray sources ; x-ray detectors</subject><ispartof>IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</citedby><cites>FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</cites><orcidid>0000-0001-7644-1548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9360474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9360474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taralli, Emanuele</creatorcontrib><creatorcontrib>D'Andrea, Matteo</creatorcontrib><creatorcontrib>Gottardi, Luciano</creatorcontrib><creatorcontrib>Nagayoshi, Kenishiro</creatorcontrib><creatorcontrib>Ridder, Marcel</creatorcontrib><creatorcontrib>de Wit, Martin</creatorcontrib><creatorcontrib>Visser, Sven</creatorcontrib><creatorcontrib>Vaccaro, Davide</creatorcontrib><creatorcontrib>Akamatsu, Hiroki</creatorcontrib><creatorcontrib>Ravensberg, Kevin</creatorcontrib><creatorcontrib>Hoogeveen, Ruud</creatorcontrib><creatorcontrib>Bruijn, Marcel</creatorcontrib><creatorcontrib>Gao, Jian-Rong</creatorcontrib><title>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description><![CDATA[Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of <inline-formula><tex-math notation="LaTeX">\mathrm{\Delta }E< </tex-math></inline-formula> 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> TiAu TESs, which have a 2.3 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m thick Au absorber for X-ray photons. The pixels have a typical normal resistance <inline-formula><tex-math notation="LaTeX">R_{\mathrm{n}}</tex-math></inline-formula> = 121 m<inline-formula><tex-math notation="LaTeX">\Omega</tex-math></inline-formula> and a critical temperature <inline-formula><tex-math notation="LaTeX">T_{\mathrm{c}}\sim</tex-math></inline-formula> 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1<inline-formula><tex-math notation="LaTeX">\;\times\; 10^{-3}</tex-math></inline-formula> when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).]]></description><subject>Arrays</subject><subject>Critical temperature</subject><subject>Crosstalk</subject><subject>Detectors</subject><subject>Energy resolution</subject><subject>Frequency division multiplexing</subject><subject>Histograms</subject><subject>modulated x-ray source</subject><subject>Observatories</subject><subject>Photonics</subject><subject>Photons</subject><subject>Pixels</subject><subject>Sensor arrays</subject><subject>Soft x rays</subject><subject>Space telescopes</subject><subject>superconducting devices</subject><subject>Temperature measurement</subject><subject>X ray sources</subject><subject>x-ray detectors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Kw0AQgBdRsFYfQLwseDXt7F-68RZi_QHBYlPwtmw3u7q1TeomBfMkPpAvZkKLl5lh-GaG-RC6JDAiBJJxns6zEQVKRgxiApQeoQERQkZUEHHc1SBIJCllp-isrlcAhEsuBsjnfpzucD6dY0bx708fZ_7brnEagm5v8aL0rgob37Q3OP-wYaPXOAtVXTd6_Yl1WeCZDT2hS2OxbvCdd84GWzb4LXrVLZ6WNrx7W5-jE6fXtb045CFa3E_z7DF6fnl4ytLnyFCQTTQB4SihEAtZFJQaTQ3hkPCuxwumXWwk51pK6kyREBHHbGkIWy4hNjHTUrAhut7v3Ybqa2frRq2qXSi7k4oKYDxJJJt0FNlTpv8lWKe2wW90aBUB1RtVvVHVG1UHo93M1X7GW2v_-YTFwCec_QFDfm9D</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Taralli, Emanuele</creator><creator>D'Andrea, Matteo</creator><creator>Gottardi, Luciano</creator><creator>Nagayoshi, Kenishiro</creator><creator>Ridder, Marcel</creator><creator>de Wit, Martin</creator><creator>Visser, Sven</creator><creator>Vaccaro, Davide</creator><creator>Akamatsu, Hiroki</creator><creator>Ravensberg, Kevin</creator><creator>Hoogeveen, Ruud</creator><creator>Bruijn, Marcel</creator><creator>Gao, Jian-Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7644-1548</orcidid></search><sort><creationdate>20210801</creationdate><title>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</title><author>Taralli, Emanuele ; D'Andrea, Matteo ; Gottardi, Luciano ; Nagayoshi, Kenishiro ; Ridder, Marcel ; de Wit, Martin ; Visser, Sven ; Vaccaro, Davide ; Akamatsu, Hiroki ; Ravensberg, Kevin ; Hoogeveen, Ruud ; Bruijn, Marcel ; Gao, Jian-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-705f2120658dd22ca2c140942124d3af6c844a882fcd915663bc13bb06c63a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Critical temperature</topic><topic>Crosstalk</topic><topic>Detectors</topic><topic>Energy resolution</topic><topic>Frequency division multiplexing</topic><topic>Histograms</topic><topic>modulated x-ray source</topic><topic>Observatories</topic><topic>Photonics</topic><topic>Photons</topic><topic>Pixels</topic><topic>Sensor arrays</topic><topic>Soft x rays</topic><topic>Space telescopes</topic><topic>superconducting devices</topic><topic>Temperature measurement</topic><topic>X ray sources</topic><topic>x-ray detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taralli, Emanuele</creatorcontrib><creatorcontrib>D'Andrea, Matteo</creatorcontrib><creatorcontrib>Gottardi, Luciano</creatorcontrib><creatorcontrib>Nagayoshi, Kenishiro</creatorcontrib><creatorcontrib>Ridder, Marcel</creatorcontrib><creatorcontrib>de Wit, Martin</creatorcontrib><creatorcontrib>Visser, Sven</creatorcontrib><creatorcontrib>Vaccaro, Davide</creatorcontrib><creatorcontrib>Akamatsu, Hiroki</creatorcontrib><creatorcontrib>Ravensberg, Kevin</creatorcontrib><creatorcontrib>Hoogeveen, Ruud</creatorcontrib><creatorcontrib>Bruijn, Marcel</creatorcontrib><creatorcontrib>Gao, Jian-Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taralli, Emanuele</au><au>D'Andrea, Matteo</au><au>Gottardi, Luciano</au><au>Nagayoshi, Kenishiro</au><au>Ridder, Marcel</au><au>de Wit, Martin</au><au>Visser, Sven</au><au>Vaccaro, Davide</au><au>Akamatsu, Hiroki</au><au>Ravensberg, Kevin</au><au>Hoogeveen, Ruud</au><au>Bruijn, Marcel</au><au>Gao, Jian-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract><![CDATA[Large format arrays of transition edge sensor (TES) are crucial for the next generation of X-ray space observatories. Such arrays are required to achieve an energy resolution of <inline-formula><tex-math notation="LaTeX">\mathrm{\Delta }E< </tex-math></inline-formula> 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays as a backup option for the X-IFU instrument on board of ATHENA space telescope, led by ESA and foreseen to be launched in 2031. In this contribution, we report on the development and the characterization of a uniform 32 × 32 pixel array with (length × width) 140 × 30 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">^2</tex-math></inline-formula> TiAu TESs, which have a 2.3 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m thick Au absorber for X-ray photons. The pixels have a typical normal resistance <inline-formula><tex-math notation="LaTeX">R_{\mathrm{n}}</tex-math></inline-formula> = 121 m<inline-formula><tex-math notation="LaTeX">\Omega</tex-math></inline-formula> and a critical temperature <inline-formula><tex-math notation="LaTeX">T_{\mathrm{c}}\sim</tex-math></inline-formula> 90 mK. We performed extensive measurements on 60 pixels out of the array in order to show the uniformity of the array. We obtained an energy resolutions between 2.4 and 2.6 eV (FWHM) at 5.9 keV, measured in a single-pixel mode at AC bias frequencies ranging from 1 to 5 MHz, with a frequency domain multiplexing (FDM) readout system, which is developed at SRON/VTT. We also present the detector energy resolution at X-ray with different photon energies generated by a modulated external X-ray source from 1.45 keV up to 8.9 keV. Multiplexing readout across several pixels has also been performed to evaluate the impact of the thermal crosstalk to the instrument's energy resolution budget requirement. This value results in a derived requirement, for the first neighbour, that is less than 1<inline-formula><tex-math notation="LaTeX">\;\times\; 10^{-3}</tex-math></inline-formula> when considering the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 5.9 keV).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3061022</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7644-1548</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_9360474 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Critical temperature Crosstalk Detectors Energy resolution Frequency division multiplexing Histograms modulated x-ray source Observatories Photonics Photons Pixels Sensor arrays Soft x rays Space telescopes superconducting devices Temperature measurement X ray sources x-ray detectors |
title | Ti/Au TES 32 × 32 Pixel Array: Uniformity, Thermal Crosstalk and Performance at Different X-Ray Energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ti/Au%20TES%2032%20%C3%97%2032%20Pixel%20Array:%20Uniformity,%20Thermal%20Crosstalk%20and%20Performance%20at%20Different%20X-Ray%20Energies&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Taralli,%20Emanuele&rft.date=2021-08-01&rft.volume=31&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3061022&rft_dat=%3Cproquest_RIE%3E2503499837%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503499837&rft_id=info:pmid/&rft_ieee_id=9360474&rfr_iscdi=true |