Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry

Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12
Hauptverfasser: Yardim, Caglar, Johnson, Joel T., Jezek, Kenneth C., Andrews, Mark J., Durand, Michael, Duan, Yuna, Tan, Shurun, Tsang, Leung, Brogioni, Marco, Macelloni, Giovanni, Bringer, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Yardim, Caglar
Johnson, Joel T.
Jezek, Kenneth C.
Andrews, Mark J.
Durand, Michael
Duan, Yuna
Tan, Shurun
Tsang, Leung
Brogioni, Marco
Macelloni, Giovanni
Bringer, Alexandra
description Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.
doi_str_mv 10.1109/TGRS.2020.3043954
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9359365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359365</ieee_id><sourcerecordid>2607876362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjyZtLmXoHEyErbs1JOmpZmztTFLH_r0tG14dODzv-XgQuid4QgiWT-VsuZpQTPGE4YxJnl2gEeG8SLHIsks0wkSKlBaSXqObEDYYk4yTfIQ-Zx6g2eqmSuYWktU3QExWnQmdr3XfKGG3B69j5yF5CdHtdHRtk6yDa76S9TZ6fXAVmCH_7qxvD_oXkqWuXLuD6I-36KrW2wB35zpG5etLOX1LFx-z-fR5kVoqWUwziXnBhDGiMIZLyizW3GqTkzwrqGW1YJhoYxmtrMxNzQkz1FAGphCysmyMHk9j97796SBEtWk73_QbFRU4L3LBBO0pcqL6O0PwUKu97x_yR0WwGiyqwaIaLKqzxT7zcMo4APjnJeOSCc7-AEBCbw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607876362</pqid></control><display><type>article</type><title>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</title><source>IEEE Electronic Library (IEL)</source><creator>Yardim, Caglar ; Johnson, Joel T. ; Jezek, Kenneth C. ; Andrews, Mark J. ; Durand, Michael ; Duan, Yuna ; Tan, Shurun ; Tsang, Leung ; Brogioni, Marco ; Macelloni, Giovanni ; Bringer, Alexandra</creator><creatorcontrib>Yardim, Caglar ; Johnson, Joel T. ; Jezek, Kenneth C. ; Andrews, Mark J. ; Durand, Michael ; Duan, Yuna ; Tan, Shurun ; Tsang, Leung ; Brogioni, Marco ; Macelloni, Giovanni ; Bringer, Alexandra</creatorcontrib><description>Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3043954</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayesian analysis ; Boreholes ; Brightness ; Brightness temperature ; Coastal zone ; Flight ; Flight paths ; Glaciation ; Glaciers ; Greenland ice sheet ; Ice ; Ice sheets ; Microwave FET integrated circuits ; Microwave integrated circuits ; Microwave measurement ; Microwave radiometers ; Microwave radiometry ; Mitigation ; Neem ; Probability theory ; Radio frequency interference ; Radiometers ; Radiometry ; Remote sensing ; Scale models ; Spectra ; subsurface temperature ; Surface radiation temperature ; Temperature ; Temperature measurement ; Temperature profile ; Temperature profiles ; temperature retrieval ; Temperature sensors ; Ultrawideband</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</citedby><cites>FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</cites><orcidid>0000-0002-0984-3982 ; 0000-0001-6232-6020 ; 0000-0003-2682-6196 ; 0000-0002-9738-7939 ; 0000-0001-6088-2832 ; 0000-0002-7331-3484 ; 0000-0001-9508-8954 ; 0000-0002-6921-6059 ; 0000-0003-3192-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yardim, Caglar</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Jezek, Kenneth C.</creatorcontrib><creatorcontrib>Andrews, Mark J.</creatorcontrib><creatorcontrib>Durand, Michael</creatorcontrib><creatorcontrib>Duan, Yuna</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Brogioni, Marco</creatorcontrib><creatorcontrib>Macelloni, Giovanni</creatorcontrib><creatorcontrib>Bringer, Alexandra</creatorcontrib><title>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Boreholes</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Coastal zone</subject><subject>Flight</subject><subject>Flight paths</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Greenland ice sheet</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Microwave FET integrated circuits</subject><subject>Microwave integrated circuits</subject><subject>Microwave measurement</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Mitigation</subject><subject>Neem</subject><subject>Probability theory</subject><subject>Radio frequency interference</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Scale models</subject><subject>Spectra</subject><subject>subsurface temperature</subject><subject>Surface radiation temperature</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>temperature retrieval</subject><subject>Temperature sensors</subject><subject>Ultrawideband</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjyZtLmXoHEyErbs1JOmpZmztTFLH_r0tG14dODzv-XgQuid4QgiWT-VsuZpQTPGE4YxJnl2gEeG8SLHIsks0wkSKlBaSXqObEDYYk4yTfIQ-Zx6g2eqmSuYWktU3QExWnQmdr3XfKGG3B69j5yF5CdHtdHRtk6yDa76S9TZ6fXAVmCH_7qxvD_oXkqWuXLuD6I-36KrW2wB35zpG5etLOX1LFx-z-fR5kVoqWUwziXnBhDGiMIZLyizW3GqTkzwrqGW1YJhoYxmtrMxNzQkz1FAGphCysmyMHk9j97796SBEtWk73_QbFRU4L3LBBO0pcqL6O0PwUKu97x_yR0WwGiyqwaIaLKqzxT7zcMo4APjnJeOSCc7-AEBCbw8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yardim, Caglar</creator><creator>Johnson, Joel T.</creator><creator>Jezek, Kenneth C.</creator><creator>Andrews, Mark J.</creator><creator>Durand, Michael</creator><creator>Duan, Yuna</creator><creator>Tan, Shurun</creator><creator>Tsang, Leung</creator><creator>Brogioni, Marco</creator><creator>Macelloni, Giovanni</creator><creator>Bringer, Alexandra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0984-3982</orcidid><orcidid>https://orcid.org/0000-0001-6232-6020</orcidid><orcidid>https://orcid.org/0000-0003-2682-6196</orcidid><orcidid>https://orcid.org/0000-0002-9738-7939</orcidid><orcidid>https://orcid.org/0000-0001-6088-2832</orcidid><orcidid>https://orcid.org/0000-0002-7331-3484</orcidid><orcidid>https://orcid.org/0000-0001-9508-8954</orcidid><orcidid>https://orcid.org/0000-0002-6921-6059</orcidid><orcidid>https://orcid.org/0000-0003-3192-2799</orcidid></search><sort><creationdate>2022</creationdate><title>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</title><author>Yardim, Caglar ; Johnson, Joel T. ; Jezek, Kenneth C. ; Andrews, Mark J. ; Durand, Michael ; Duan, Yuna ; Tan, Shurun ; Tsang, Leung ; Brogioni, Marco ; Macelloni, Giovanni ; Bringer, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Boreholes</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Coastal zone</topic><topic>Flight</topic><topic>Flight paths</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Greenland ice sheet</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Microwave FET integrated circuits</topic><topic>Microwave integrated circuits</topic><topic>Microwave measurement</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Mitigation</topic><topic>Neem</topic><topic>Probability theory</topic><topic>Radio frequency interference</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Scale models</topic><topic>Spectra</topic><topic>subsurface temperature</topic><topic>Surface radiation temperature</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>temperature retrieval</topic><topic>Temperature sensors</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yardim, Caglar</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Jezek, Kenneth C.</creatorcontrib><creatorcontrib>Andrews, Mark J.</creatorcontrib><creatorcontrib>Durand, Michael</creatorcontrib><creatorcontrib>Duan, Yuna</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Brogioni, Marco</creatorcontrib><creatorcontrib>Macelloni, Giovanni</creatorcontrib><creatorcontrib>Bringer, Alexandra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yardim, Caglar</au><au>Johnson, Joel T.</au><au>Jezek, Kenneth C.</au><au>Andrews, Mark J.</au><au>Durand, Michael</au><au>Duan, Yuna</au><au>Tan, Shurun</au><au>Tsang, Leung</au><au>Brogioni, Marco</au><au>Macelloni, Giovanni</au><au>Bringer, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3043954</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0984-3982</orcidid><orcidid>https://orcid.org/0000-0001-6232-6020</orcidid><orcidid>https://orcid.org/0000-0003-2682-6196</orcidid><orcidid>https://orcid.org/0000-0002-9738-7939</orcidid><orcidid>https://orcid.org/0000-0001-6088-2832</orcidid><orcidid>https://orcid.org/0000-0002-7331-3484</orcidid><orcidid>https://orcid.org/0000-0001-9508-8954</orcidid><orcidid>https://orcid.org/0000-0002-6921-6059</orcidid><orcidid>https://orcid.org/0000-0003-3192-2799</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9359365
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayesian analysis
Boreholes
Brightness
Brightness temperature
Coastal zone
Flight
Flight paths
Glaciation
Glaciers
Greenland ice sheet
Ice
Ice sheets
Microwave FET integrated circuits
Microwave integrated circuits
Microwave measurement
Microwave radiometers
Microwave radiometry
Mitigation
Neem
Probability theory
Radio frequency interference
Radiometers
Radiometry
Remote sensing
Scale models
Spectra
subsurface temperature
Surface radiation temperature
Temperature
Temperature measurement
Temperature profile
Temperature profiles
temperature retrieval
Temperature sensors
Ultrawideband
title Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenland%20Ice%20Sheet%20Subsurface%20Temperature%20Estimation%20Using%20Ultrawideband%20Microwave%20Radiometry&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yardim,%20Caglar&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3043954&rft_dat=%3Cproquest_RIE%3E2607876362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607876362&rft_id=info:pmid/&rft_ieee_id=9359365&rfr_iscdi=true