Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry
Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Yardim, Caglar Johnson, Joel T. Jezek, Kenneth C. Andrews, Mark J. Durand, Michael Duan, Yuna Tan, Shurun Tsang, Leung Brogioni, Marco Macelloni, Giovanni Bringer, Alexandra |
description | Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures. |
doi_str_mv | 10.1109/TGRS.2020.3043954 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9359365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359365</ieee_id><sourcerecordid>2607876362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjyZtLmXoHEyErbs1JOmpZmztTFLH_r0tG14dODzv-XgQuid4QgiWT-VsuZpQTPGE4YxJnl2gEeG8SLHIsks0wkSKlBaSXqObEDYYk4yTfIQ-Zx6g2eqmSuYWktU3QExWnQmdr3XfKGG3B69j5yF5CdHtdHRtk6yDa76S9TZ6fXAVmCH_7qxvD_oXkqWuXLuD6I-36KrW2wB35zpG5etLOX1LFx-z-fR5kVoqWUwziXnBhDGiMIZLyizW3GqTkzwrqGW1YJhoYxmtrMxNzQkz1FAGphCysmyMHk9j97796SBEtWk73_QbFRU4L3LBBO0pcqL6O0PwUKu97x_yR0WwGiyqwaIaLKqzxT7zcMo4APjnJeOSCc7-AEBCbw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607876362</pqid></control><display><type>article</type><title>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</title><source>IEEE Electronic Library (IEL)</source><creator>Yardim, Caglar ; Johnson, Joel T. ; Jezek, Kenneth C. ; Andrews, Mark J. ; Durand, Michael ; Duan, Yuna ; Tan, Shurun ; Tsang, Leung ; Brogioni, Marco ; Macelloni, Giovanni ; Bringer, Alexandra</creator><creatorcontrib>Yardim, Caglar ; Johnson, Joel T. ; Jezek, Kenneth C. ; Andrews, Mark J. ; Durand, Michael ; Duan, Yuna ; Tan, Shurun ; Tsang, Leung ; Brogioni, Marco ; Macelloni, Giovanni ; Bringer, Alexandra</creatorcontrib><description>Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3043954</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayesian analysis ; Boreholes ; Brightness ; Brightness temperature ; Coastal zone ; Flight ; Flight paths ; Glaciation ; Glaciers ; Greenland ice sheet ; Ice ; Ice sheets ; Microwave FET integrated circuits ; Microwave integrated circuits ; Microwave measurement ; Microwave radiometers ; Microwave radiometry ; Mitigation ; Neem ; Probability theory ; Radio frequency interference ; Radiometers ; Radiometry ; Remote sensing ; Scale models ; Spectra ; subsurface temperature ; Surface radiation temperature ; Temperature ; Temperature measurement ; Temperature profile ; Temperature profiles ; temperature retrieval ; Temperature sensors ; Ultrawideband</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</citedby><cites>FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</cites><orcidid>0000-0002-0984-3982 ; 0000-0001-6232-6020 ; 0000-0003-2682-6196 ; 0000-0002-9738-7939 ; 0000-0001-6088-2832 ; 0000-0002-7331-3484 ; 0000-0001-9508-8954 ; 0000-0002-6921-6059 ; 0000-0003-3192-2799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yardim, Caglar</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Jezek, Kenneth C.</creatorcontrib><creatorcontrib>Andrews, Mark J.</creatorcontrib><creatorcontrib>Durand, Michael</creatorcontrib><creatorcontrib>Duan, Yuna</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Brogioni, Marco</creatorcontrib><creatorcontrib>Macelloni, Giovanni</creatorcontrib><creatorcontrib>Bringer, Alexandra</creatorcontrib><title>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Boreholes</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Coastal zone</subject><subject>Flight</subject><subject>Flight paths</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Greenland ice sheet</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Microwave FET integrated circuits</subject><subject>Microwave integrated circuits</subject><subject>Microwave measurement</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Mitigation</subject><subject>Neem</subject><subject>Probability theory</subject><subject>Radio frequency interference</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Scale models</subject><subject>Spectra</subject><subject>subsurface temperature</subject><subject>Surface radiation temperature</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>temperature retrieval</subject><subject>Temperature sensors</subject><subject>Ultrawideband</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjyZtLmXoHEyErbs1JOmpZmztTFLH_r0tG14dODzv-XgQuid4QgiWT-VsuZpQTPGE4YxJnl2gEeG8SLHIsks0wkSKlBaSXqObEDYYk4yTfIQ-Zx6g2eqmSuYWktU3QExWnQmdr3XfKGG3B69j5yF5CdHtdHRtk6yDa76S9TZ6fXAVmCH_7qxvD_oXkqWuXLuD6I-36KrW2wB35zpG5etLOX1LFx-z-fR5kVoqWUwziXnBhDGiMIZLyizW3GqTkzwrqGW1YJhoYxmtrMxNzQkz1FAGphCysmyMHk9j97796SBEtWk73_QbFRU4L3LBBO0pcqL6O0PwUKu97x_yR0WwGiyqwaIaLKqzxT7zcMo4APjnJeOSCc7-AEBCbw8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yardim, Caglar</creator><creator>Johnson, Joel T.</creator><creator>Jezek, Kenneth C.</creator><creator>Andrews, Mark J.</creator><creator>Durand, Michael</creator><creator>Duan, Yuna</creator><creator>Tan, Shurun</creator><creator>Tsang, Leung</creator><creator>Brogioni, Marco</creator><creator>Macelloni, Giovanni</creator><creator>Bringer, Alexandra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0984-3982</orcidid><orcidid>https://orcid.org/0000-0001-6232-6020</orcidid><orcidid>https://orcid.org/0000-0003-2682-6196</orcidid><orcidid>https://orcid.org/0000-0002-9738-7939</orcidid><orcidid>https://orcid.org/0000-0001-6088-2832</orcidid><orcidid>https://orcid.org/0000-0002-7331-3484</orcidid><orcidid>https://orcid.org/0000-0001-9508-8954</orcidid><orcidid>https://orcid.org/0000-0002-6921-6059</orcidid><orcidid>https://orcid.org/0000-0003-3192-2799</orcidid></search><sort><creationdate>2022</creationdate><title>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</title><author>Yardim, Caglar ; Johnson, Joel T. ; Jezek, Kenneth C. ; Andrews, Mark J. ; Durand, Michael ; Duan, Yuna ; Tan, Shurun ; Tsang, Leung ; Brogioni, Marco ; Macelloni, Giovanni ; Bringer, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4905836bb68bb5923c0a5cab717482c3f6301abc32dc97bf513b2b23eb869dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Boreholes</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Coastal zone</topic><topic>Flight</topic><topic>Flight paths</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Greenland ice sheet</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Microwave FET integrated circuits</topic><topic>Microwave integrated circuits</topic><topic>Microwave measurement</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Mitigation</topic><topic>Neem</topic><topic>Probability theory</topic><topic>Radio frequency interference</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Scale models</topic><topic>Spectra</topic><topic>subsurface temperature</topic><topic>Surface radiation temperature</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>temperature retrieval</topic><topic>Temperature sensors</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yardim, Caglar</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Jezek, Kenneth C.</creatorcontrib><creatorcontrib>Andrews, Mark J.</creatorcontrib><creatorcontrib>Durand, Michael</creatorcontrib><creatorcontrib>Duan, Yuna</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Brogioni, Marco</creatorcontrib><creatorcontrib>Macelloni, Giovanni</creatorcontrib><creatorcontrib>Bringer, Alexandra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yardim, Caglar</au><au>Johnson, Joel T.</au><au>Jezek, Kenneth C.</au><au>Andrews, Mark J.</au><au>Durand, Michael</au><au>Duan, Yuna</au><au>Tan, Shurun</au><au>Tsang, Leung</au><au>Brogioni, Marco</au><au>Macelloni, Giovanni</au><au>Bringer, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Ice sheet subsurface temperature is important for understanding glacier dynamics, yet existing methods to obtain the temperature of the ice sheet column are limited to in situ sources at present. The ultrawideband software-defined microwave radiometer (UWBRAD) has been developed to investigate the remote sensing of ice sheet internal temperatures. UWBRAD measures brightness temperature spectra from 0.5 to 2 GHz using 12 subchannels and employs a sophisticated algorithm for detection and mitigation of radio frequency interference (RFI). The instrument was deployed during a flight over northwestern Greenland in September 2017 and acquired the first wideband low-frequency brightness temperature spectra over the ice sheet and coastal regions. The results reveal strong spatial and spectral variations that correlate well with internal ice sheet temperature information. In this article, the section of the flight path ranging from the Camp Century to NEEM to NGRIP boreholes is used for subsurface temperature estimation. A "partially coherent" forward model is applied along with a Robin model for the temperature profile and a two-scale model of ice sheet density variations to describe measured brightness temperatures. Using this model, vertical temperature profiles are retrieved along the flight path using a sequential Bayesian estimator; borehole measurements at the three campsites are used to obtain Bayesian priors. The retrieved temperature profiles show reasonable behaviors and demonstrate the potential of ultrawideband microwave radiometry for remotely sensing internal ice sheet temperatures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3043954</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0984-3982</orcidid><orcidid>https://orcid.org/0000-0001-6232-6020</orcidid><orcidid>https://orcid.org/0000-0003-2682-6196</orcidid><orcidid>https://orcid.org/0000-0002-9738-7939</orcidid><orcidid>https://orcid.org/0000-0001-6088-2832</orcidid><orcidid>https://orcid.org/0000-0002-7331-3484</orcidid><orcidid>https://orcid.org/0000-0001-9508-8954</orcidid><orcidid>https://orcid.org/0000-0002-6921-6059</orcidid><orcidid>https://orcid.org/0000-0003-3192-2799</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9359365 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bayesian analysis Boreholes Brightness Brightness temperature Coastal zone Flight Flight paths Glaciation Glaciers Greenland ice sheet Ice Ice sheets Microwave FET integrated circuits Microwave integrated circuits Microwave measurement Microwave radiometers Microwave radiometry Mitigation Neem Probability theory Radio frequency interference Radiometers Radiometry Remote sensing Scale models Spectra subsurface temperature Surface radiation temperature Temperature Temperature measurement Temperature profile Temperature profiles temperature retrieval Temperature sensors Ultrawideband |
title | Greenland Ice Sheet Subsurface Temperature Estimation Using Ultrawideband Microwave Radiometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenland%20Ice%20Sheet%20Subsurface%20Temperature%20Estimation%20Using%20Ultrawideband%20Microwave%20Radiometry&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yardim,%20Caglar&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3043954&rft_dat=%3Cproquest_RIE%3E2607876362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607876362&rft_id=info:pmid/&rft_ieee_id=9359365&rfr_iscdi=true |