Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages

Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.52053-52066
Hauptverfasser: Hawwash, A. A., Ahamed, Maqusood, Nada, S. A., Radwan, Ali, Abdel-Rahman, Ali K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52066
container_issue
container_start_page 52053
container_title IEEE access
container_volume 9
creator Hawwash, A. A.
Ahamed, Maqusood
Nada, S. A.
Radwan, Ali
Abdel-Rahman, Ali K.
description Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.
doi_str_mv 10.1109/ACCESS.2021.3060004
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9356590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9356590</ieee_id><doaj_id>oai_doaj_org_article_7f37930cc21048689a8a6d7fd32a9940</doaj_id><sourcerecordid>2512231052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNSWFhjS_IBdBz7sZSdbXcXGSNhDawCZnIcujrRfF2kjeQ_59lXgJhUHzwXtvBr2muaKwphTM9abrbrfbNQNG1xwkALRfmnNGpVlxweXZf_W35rKUfUWAriOhzpvd01_MLy6SzeTiWxkLSYHcRTeTx_og2aboMulSjOjnlMlzGacduRlDwIzTTH67KYV4HIdC3DR8tAeX59FHLOQRs68gt8PyvfkaXCx4ecoXzfPd7VP3a_Xw5-d9t3lY-Rb0vFJKQG8C10obIfuW9pQLP0gQZhgk90OPQbRKU409r6GDp8hRQY-toIzyi-Z-0R2S29tDHl9cfrPJjfZjkPLOns6zKnBlOHjPKLRaauO0k4MKA2fOmBaq1o9F65DT6xHLbPfpmOs_FcvqMsYpCFZRfEH5nErJGD63UrDvBtnFIPtukD0ZVFlXC2tExE-G4UIKA_wf2u-LbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512231052</pqid></control><display><type>article</type><title>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hawwash, A. A. ; Ahamed, Maqusood ; Nada, S. A. ; Radwan, Ali ; Abdel-Rahman, Ali K.</creator><creatorcontrib>Hawwash, A. A. ; Ahamed, Maqusood ; Nada, S. A. ; Radwan, Ali ; Abdel-Rahman, Ali K.</creatorcontrib><description>Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3060004</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>alumina and copper oxide nanoparticles ; Aluminum oxide ; Conductivity ; Copper ; Copper oxides ; Dynamic models ; Flat plate solar collector ; Flat plates ; Fluids ; Hot climates ; Nanofluidics ; Nanofluids ; Nanoparticles ; Performance enhancement ; Pressure drop ; Solar collectors ; Solar heating ; Thermal analysis ; thermal efficiency ; thermal model ; Thermodynamic efficiency ; Water heating ; Working fluids</subject><ispartof>IEEE access, 2021, Vol.9, p.52053-52066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</citedby><cites>FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</cites><orcidid>0000-0002-0664-4160 ; 0000-0003-4134-5542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9356590$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hawwash, A. A.</creatorcontrib><creatorcontrib>Ahamed, Maqusood</creatorcontrib><creatorcontrib>Nada, S. A.</creatorcontrib><creatorcontrib>Radwan, Ali</creatorcontrib><creatorcontrib>Abdel-Rahman, Ali K.</creatorcontrib><title>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</title><title>IEEE access</title><addtitle>Access</addtitle><description>Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.</description><subject>alumina and copper oxide nanoparticles</subject><subject>Aluminum oxide</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Dynamic models</subject><subject>Flat plate solar collector</subject><subject>Flat plates</subject><subject>Fluids</subject><subject>Hot climates</subject><subject>Nanofluidics</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><subject>Pressure drop</subject><subject>Solar collectors</subject><subject>Solar heating</subject><subject>Thermal analysis</subject><subject>thermal efficiency</subject><subject>thermal model</subject><subject>Thermodynamic efficiency</subject><subject>Water heating</subject><subject>Working fluids</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNSWFhjS_IBdBz7sZSdbXcXGSNhDawCZnIcujrRfF2kjeQ_59lXgJhUHzwXtvBr2muaKwphTM9abrbrfbNQNG1xwkALRfmnNGpVlxweXZf_W35rKUfUWAriOhzpvd01_MLy6SzeTiWxkLSYHcRTeTx_og2aboMulSjOjnlMlzGacduRlDwIzTTH67KYV4HIdC3DR8tAeX59FHLOQRs68gt8PyvfkaXCx4ecoXzfPd7VP3a_Xw5-d9t3lY-Rb0vFJKQG8C10obIfuW9pQLP0gQZhgk90OPQbRKU409r6GDp8hRQY-toIzyi-Z-0R2S29tDHl9cfrPJjfZjkPLOns6zKnBlOHjPKLRaauO0k4MKA2fOmBaq1o9F65DT6xHLbPfpmOs_FcvqMsYpCFZRfEH5nErJGD63UrDvBtnFIPtukD0ZVFlXC2tExE-G4UIKA_wf2u-LbQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hawwash, A. A.</creator><creator>Ahamed, Maqusood</creator><creator>Nada, S. A.</creator><creator>Radwan, Ali</creator><creator>Abdel-Rahman, Ali K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0664-4160</orcidid><orcidid>https://orcid.org/0000-0003-4134-5542</orcidid></search><sort><creationdate>2021</creationdate><title>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</title><author>Hawwash, A. A. ; Ahamed, Maqusood ; Nada, S. A. ; Radwan, Ali ; Abdel-Rahman, Ali K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alumina and copper oxide nanoparticles</topic><topic>Aluminum oxide</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Dynamic models</topic><topic>Flat plate solar collector</topic><topic>Flat plates</topic><topic>Fluids</topic><topic>Hot climates</topic><topic>Nanofluidics</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><topic>Pressure drop</topic><topic>Solar collectors</topic><topic>Solar heating</topic><topic>Thermal analysis</topic><topic>thermal efficiency</topic><topic>thermal model</topic><topic>Thermodynamic efficiency</topic><topic>Water heating</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawwash, A. A.</creatorcontrib><creatorcontrib>Ahamed, Maqusood</creatorcontrib><creatorcontrib>Nada, S. A.</creatorcontrib><creatorcontrib>Radwan, Ali</creatorcontrib><creatorcontrib>Abdel-Rahman, Ali K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawwash, A. A.</au><au>Ahamed, Maqusood</au><au>Nada, S. A.</au><au>Radwan, Ali</au><au>Abdel-Rahman, Ali K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>52053</spage><epage>52066</epage><pages>52053-52066</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3060004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0664-4160</orcidid><orcidid>https://orcid.org/0000-0003-4134-5542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.52053-52066
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9356590
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects alumina and copper oxide nanoparticles
Aluminum oxide
Conductivity
Copper
Copper oxides
Dynamic models
Flat plate solar collector
Flat plates
Fluids
Hot climates
Nanofluidics
Nanofluids
Nanoparticles
Performance enhancement
Pressure drop
Solar collectors
Solar heating
Thermal analysis
thermal efficiency
thermal model
Thermodynamic efficiency
Water heating
Working fluids
title Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20of%20Flat%20Plate%20Solar%20Collector%20Using%20Different%20Nanofluids%20and%20Nanoparticles%20Percentages&rft.jtitle=IEEE%20access&rft.au=Hawwash,%20A.%20A.&rft.date=2021&rft.volume=9&rft.spage=52053&rft.epage=52066&rft.pages=52053-52066&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3060004&rft_dat=%3Cproquest_ieee_%3E2512231052%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512231052&rft_id=info:pmid/&rft_ieee_id=9356590&rft_doaj_id=oai_doaj_org_article_7f37930cc21048689a8a6d7fd32a9940&rfr_iscdi=true