Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages
Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.52053-52066 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52066 |
---|---|
container_issue | |
container_start_page | 52053 |
container_title | IEEE access |
container_volume | 9 |
creator | Hawwash, A. A. Ahamed, Maqusood Nada, S. A. Radwan, Ali Abdel-Rahman, Ali K. |
description | Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions. |
doi_str_mv | 10.1109/ACCESS.2021.3060004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9356590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9356590</ieee_id><doaj_id>oai_doaj_org_article_7f37930cc21048689a8a6d7fd32a9940</doaj_id><sourcerecordid>2512231052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNSWFhjS_IBdBz7sZSdbXcXGSNhDawCZnIcujrRfF2kjeQ_59lXgJhUHzwXtvBr2muaKwphTM9abrbrfbNQNG1xwkALRfmnNGpVlxweXZf_W35rKUfUWAriOhzpvd01_MLy6SzeTiWxkLSYHcRTeTx_og2aboMulSjOjnlMlzGacduRlDwIzTTH67KYV4HIdC3DR8tAeX59FHLOQRs68gt8PyvfkaXCx4ecoXzfPd7VP3a_Xw5-d9t3lY-Rb0vFJKQG8C10obIfuW9pQLP0gQZhgk90OPQbRKU409r6GDp8hRQY-toIzyi-Z-0R2S29tDHl9cfrPJjfZjkPLOns6zKnBlOHjPKLRaauO0k4MKA2fOmBaq1o9F65DT6xHLbPfpmOs_FcvqMsYpCFZRfEH5nErJGD63UrDvBtnFIPtukD0ZVFlXC2tExE-G4UIKA_wf2u-LbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512231052</pqid></control><display><type>article</type><title>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hawwash, A. A. ; Ahamed, Maqusood ; Nada, S. A. ; Radwan, Ali ; Abdel-Rahman, Ali K.</creator><creatorcontrib>Hawwash, A. A. ; Ahamed, Maqusood ; Nada, S. A. ; Radwan, Ali ; Abdel-Rahman, Ali K.</creatorcontrib><description>Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3060004</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>alumina and copper oxide nanoparticles ; Aluminum oxide ; Conductivity ; Copper ; Copper oxides ; Dynamic models ; Flat plate solar collector ; Flat plates ; Fluids ; Hot climates ; Nanofluidics ; Nanofluids ; Nanoparticles ; Performance enhancement ; Pressure drop ; Solar collectors ; Solar heating ; Thermal analysis ; thermal efficiency ; thermal model ; Thermodynamic efficiency ; Water heating ; Working fluids</subject><ispartof>IEEE access, 2021, Vol.9, p.52053-52066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</citedby><cites>FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</cites><orcidid>0000-0002-0664-4160 ; 0000-0003-4134-5542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9356590$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hawwash, A. A.</creatorcontrib><creatorcontrib>Ahamed, Maqusood</creatorcontrib><creatorcontrib>Nada, S. A.</creatorcontrib><creatorcontrib>Radwan, Ali</creatorcontrib><creatorcontrib>Abdel-Rahman, Ali K.</creatorcontrib><title>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</title><title>IEEE access</title><addtitle>Access</addtitle><description>Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.</description><subject>alumina and copper oxide nanoparticles</subject><subject>Aluminum oxide</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Dynamic models</subject><subject>Flat plate solar collector</subject><subject>Flat plates</subject><subject>Fluids</subject><subject>Hot climates</subject><subject>Nanofluidics</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><subject>Pressure drop</subject><subject>Solar collectors</subject><subject>Solar heating</subject><subject>Thermal analysis</subject><subject>thermal efficiency</subject><subject>thermal model</subject><subject>Thermodynamic efficiency</subject><subject>Water heating</subject><subject>Working fluids</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNSWFhjS_IBdBz7sZSdbXcXGSNhDawCZnIcujrRfF2kjeQ_59lXgJhUHzwXtvBr2muaKwphTM9abrbrfbNQNG1xwkALRfmnNGpVlxweXZf_W35rKUfUWAriOhzpvd01_MLy6SzeTiWxkLSYHcRTeTx_og2aboMulSjOjnlMlzGacduRlDwIzTTH67KYV4HIdC3DR8tAeX59FHLOQRs68gt8PyvfkaXCx4ecoXzfPd7VP3a_Xw5-d9t3lY-Rb0vFJKQG8C10obIfuW9pQLP0gQZhgk90OPQbRKU409r6GDp8hRQY-toIzyi-Z-0R2S29tDHl9cfrPJjfZjkPLOns6zKnBlOHjPKLRaauO0k4MKA2fOmBaq1o9F65DT6xHLbPfpmOs_FcvqMsYpCFZRfEH5nErJGD63UrDvBtnFIPtukD0ZVFlXC2tExE-G4UIKA_wf2u-LbQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hawwash, A. A.</creator><creator>Ahamed, Maqusood</creator><creator>Nada, S. A.</creator><creator>Radwan, Ali</creator><creator>Abdel-Rahman, Ali K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0664-4160</orcidid><orcidid>https://orcid.org/0000-0003-4134-5542</orcidid></search><sort><creationdate>2021</creationdate><title>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</title><author>Hawwash, A. A. ; Ahamed, Maqusood ; Nada, S. A. ; Radwan, Ali ; Abdel-Rahman, Ali K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7750b9f3878956b41b135cd6059dd63cdbef547818eb3eb38fc1e3e70be451213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alumina and copper oxide nanoparticles</topic><topic>Aluminum oxide</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Dynamic models</topic><topic>Flat plate solar collector</topic><topic>Flat plates</topic><topic>Fluids</topic><topic>Hot climates</topic><topic>Nanofluidics</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><topic>Pressure drop</topic><topic>Solar collectors</topic><topic>Solar heating</topic><topic>Thermal analysis</topic><topic>thermal efficiency</topic><topic>thermal model</topic><topic>Thermodynamic efficiency</topic><topic>Water heating</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawwash, A. A.</creatorcontrib><creatorcontrib>Ahamed, Maqusood</creatorcontrib><creatorcontrib>Nada, S. A.</creatorcontrib><creatorcontrib>Radwan, Ali</creatorcontrib><creatorcontrib>Abdel-Rahman, Ali K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawwash, A. A.</au><au>Ahamed, Maqusood</au><au>Nada, S. A.</au><au>Radwan, Ali</au><au>Abdel-Rahman, Ali K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>52053</spage><epage>52066</epage><pages>52053-52066</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Flat plate solar collector (FPSC) is commonly used due to its low price, less complexity, and easier installation and operation. The low thermal efficiency is the main disadvantage of this type of solar collectors. In the present study, the thermal performance of the FPSC using alumina oxide -water and copper oxide -water nanofluids are evaluated. The effect of nanoparticle volume fraction and nanoparticle type are investigated theoretically and validated experimentally. A computational fluid dynamic model is developed. The model is validated with experimental result carried in this study. The model is simulated under the hot climate conditions of Egypt. The results showed that the presence of the nanoparticles in the working fluid of the FPSC increases the pressure drop in the collector, but thermal performance enhancement is also obtained. Further, an optimum nanoparticles volume fraction of 0.5% of copper oxide nanoparticle is found to attain the highest thermal efficiency of the collector. Furthermore, using copper oxide-water nanofluid is effective than using alumina oxide-water nanofluid at the same conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3060004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0664-4160</orcidid><orcidid>https://orcid.org/0000-0003-4134-5542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.52053-52066 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9356590 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | alumina and copper oxide nanoparticles Aluminum oxide Conductivity Copper Copper oxides Dynamic models Flat plate solar collector Flat plates Fluids Hot climates Nanofluidics Nanofluids Nanoparticles Performance enhancement Pressure drop Solar collectors Solar heating Thermal analysis thermal efficiency thermal model Thermodynamic efficiency Water heating Working fluids |
title | Thermal Analysis of Flat Plate Solar Collector Using Different Nanofluids and Nanoparticles Percentages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20of%20Flat%20Plate%20Solar%20Collector%20Using%20Different%20Nanofluids%20and%20Nanoparticles%20Percentages&rft.jtitle=IEEE%20access&rft.au=Hawwash,%20A.%20A.&rft.date=2021&rft.volume=9&rft.spage=52053&rft.epage=52066&rft.pages=52053-52066&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3060004&rft_dat=%3Cproquest_ieee_%3E2512231052%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512231052&rft_id=info:pmid/&rft_ieee_id=9356590&rft_doaj_id=oai_doaj_org_article_7f37930cc21048689a8a6d7fd32a9940&rfr_iscdi=true |