Dual Encoding for Video Retrieval by Text
This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-08, Vol.44 (8), p.4065-4080 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4080 |
---|---|
container_issue | 8 |
container_start_page | 4065 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Dong, Jianfeng Li, Xirong Xu, Chaoxi Yang, Xun Yang, Gang Wang, Xun Wang, Meng |
description | This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space . |
doi_str_mv | 10.1109/TPAMI.2021.3059295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9354593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354593</ieee_id><sourcerecordid>2682919084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRbK3-AQUJuNFF6pt5M0lmWWrVQkWR6nbIZF4kJU1qPsT-e1Nbu3D1Fvfcy-Mwds5hyDno2_nL6Gk6FCD4EEFpodUB63ON2keF-pD1gQfCjyIR9dhJXS8AuFSAx6yHqKIw0EGf3dy1ce5NiqR0WfHhpWXlvWeOSu-Vmiqjry60a29O380pO0rjvKaz3R2wt_vJfPzoz54fpuPRzE9Q8cZXgbUA0lIoQHJEC6HUCbgQQ86lk0DopBTaWudsKjAQ5MCSFLEM4hAdDtj1dndVlZ8t1Y1ZZnVCeR4XVLa1EVIDF1Jq0aFX_9BF2VZF950RQSQ01xDJjhJbKqnKuq4oNasqW8bV2nAwG5HmV6TZiDQ7kV3pcjfd2iW5feXPXAdcbIGMiPaxRiWVRvwBzlVz4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682919084</pqid></control><display><type>article</type><title>Dual Encoding for Video Retrieval by Text</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Jianfeng ; Li, Xirong ; Xu, Chaoxi ; Yang, Xun ; Yang, Gang ; Wang, Xun ; Wang, Meng</creator><creatorcontrib>Dong, Jianfeng ; Li, Xirong ; Xu, Chaoxi ; Yang, Xun ; Yang, Gang ; Wang, Xun ; Wang, Meng</creatorcontrib><description>This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3059295</identifier><identifier>PMID: 33587696</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Coders ; Computational modeling ; cross-modal representation learning ; dual encoding ; Electronic mail ; Encoding ; Feature extraction ; hybrid space learning ; Linguistics ; Machine learning ; Queries ; Recurrent neural networks ; Retrieval ; Video ; Video retrieval ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4065-4080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</citedby><cites>FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</cites><orcidid>0000-0003-4883-1703 ; 0000-0003-0201-1638 ; 0000-0001-5244-3274 ; 0000-0002-0220-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33587696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Jianfeng</creatorcontrib><creatorcontrib>Li, Xirong</creatorcontrib><creatorcontrib>Xu, Chaoxi</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><title>Dual Encoding for Video Retrieval by Text</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .</description><subject>Algorithms</subject><subject>Coders</subject><subject>Computational modeling</subject><subject>cross-modal representation learning</subject><subject>dual encoding</subject><subject>Electronic mail</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>hybrid space learning</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Queries</subject><subject>Recurrent neural networks</subject><subject>Retrieval</subject><subject>Video</subject><subject>Video retrieval</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AURQdRbK3-AQUJuNFF6pt5M0lmWWrVQkWR6nbIZF4kJU1qPsT-e1Nbu3D1Fvfcy-Mwds5hyDno2_nL6Gk6FCD4EEFpodUB63ON2keF-pD1gQfCjyIR9dhJXS8AuFSAx6yHqKIw0EGf3dy1ce5NiqR0WfHhpWXlvWeOSu-Vmiqjry60a29O380pO0rjvKaz3R2wt_vJfPzoz54fpuPRzE9Q8cZXgbUA0lIoQHJEC6HUCbgQQ86lk0DopBTaWudsKjAQ5MCSFLEM4hAdDtj1dndVlZ8t1Y1ZZnVCeR4XVLa1EVIDF1Jq0aFX_9BF2VZF950RQSQ01xDJjhJbKqnKuq4oNasqW8bV2nAwG5HmV6TZiDQ7kV3pcjfd2iW5feXPXAdcbIGMiPaxRiWVRvwBzlVz4w</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dong, Jianfeng</creator><creator>Li, Xirong</creator><creator>Xu, Chaoxi</creator><creator>Yang, Xun</creator><creator>Yang, Gang</creator><creator>Wang, Xun</creator><creator>Wang, Meng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4883-1703</orcidid><orcidid>https://orcid.org/0000-0003-0201-1638</orcidid><orcidid>https://orcid.org/0000-0001-5244-3274</orcidid><orcidid>https://orcid.org/0000-0002-0220-8310</orcidid></search><sort><creationdate>20220801</creationdate><title>Dual Encoding for Video Retrieval by Text</title><author>Dong, Jianfeng ; Li, Xirong ; Xu, Chaoxi ; Yang, Xun ; Yang, Gang ; Wang, Xun ; Wang, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Computational modeling</topic><topic>cross-modal representation learning</topic><topic>dual encoding</topic><topic>Electronic mail</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>hybrid space learning</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Queries</topic><topic>Recurrent neural networks</topic><topic>Retrieval</topic><topic>Video</topic><topic>Video retrieval</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jianfeng</creatorcontrib><creatorcontrib>Li, Xirong</creatorcontrib><creatorcontrib>Xu, Chaoxi</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jianfeng</au><au>Li, Xirong</au><au>Xu, Chaoxi</au><au>Yang, Xun</au><au>Yang, Gang</au><au>Wang, Xun</au><au>Wang, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Encoding for Video Retrieval by Text</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>8</issue><spage>4065</spage><epage>4080</epage><pages>4065-4080</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33587696</pmid><doi>10.1109/TPAMI.2021.3059295</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4883-1703</orcidid><orcidid>https://orcid.org/0000-0003-0201-1638</orcidid><orcidid>https://orcid.org/0000-0001-5244-3274</orcidid><orcidid>https://orcid.org/0000-0002-0220-8310</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4065-4080 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_9354593 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Coders Computational modeling cross-modal representation learning dual encoding Electronic mail Encoding Feature extraction hybrid space learning Linguistics Machine learning Queries Recurrent neural networks Retrieval Video Video retrieval Visualization |
title | Dual Encoding for Video Retrieval by Text |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Encoding%20for%20Video%20Retrieval%20by%20Text&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Dong,%20Jianfeng&rft.date=2022-08-01&rft.volume=44&rft.issue=8&rft.spage=4065&rft.epage=4080&rft.pages=4065-4080&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3059295&rft_dat=%3Cproquest_RIE%3E2682919084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682919084&rft_id=info:pmid/33587696&rft_ieee_id=9354593&rfr_iscdi=true |