Dual Encoding for Video Retrieval by Text

This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-08, Vol.44 (8), p.4065-4080
Hauptverfasser: Dong, Jianfeng, Li, Xirong, Xu, Chaoxi, Yang, Xun, Yang, Gang, Wang, Xun, Wang, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4080
container_issue 8
container_start_page 4065
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Dong, Jianfeng
Li, Xirong
Xu, Chaoxi
Yang, Xun
Yang, Gang
Wang, Xun
Wang, Meng
description This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .
doi_str_mv 10.1109/TPAMI.2021.3059295
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9354593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354593</ieee_id><sourcerecordid>2682919084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRbK3-AQUJuNFF6pt5M0lmWWrVQkWR6nbIZF4kJU1qPsT-e1Nbu3D1Fvfcy-Mwds5hyDno2_nL6Gk6FCD4EEFpodUB63ON2keF-pD1gQfCjyIR9dhJXS8AuFSAx6yHqKIw0EGf3dy1ce5NiqR0WfHhpWXlvWeOSu-Vmiqjry60a29O380pO0rjvKaz3R2wt_vJfPzoz54fpuPRzE9Q8cZXgbUA0lIoQHJEC6HUCbgQQ86lk0DopBTaWudsKjAQ5MCSFLEM4hAdDtj1dndVlZ8t1Y1ZZnVCeR4XVLa1EVIDF1Jq0aFX_9BF2VZF950RQSQ01xDJjhJbKqnKuq4oNasqW8bV2nAwG5HmV6TZiDQ7kV3pcjfd2iW5feXPXAdcbIGMiPaxRiWVRvwBzlVz4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682919084</pqid></control><display><type>article</type><title>Dual Encoding for Video Retrieval by Text</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Jianfeng ; Li, Xirong ; Xu, Chaoxi ; Yang, Xun ; Yang, Gang ; Wang, Xun ; Wang, Meng</creator><creatorcontrib>Dong, Jianfeng ; Li, Xirong ; Xu, Chaoxi ; Yang, Xun ; Yang, Gang ; Wang, Xun ; Wang, Meng</creatorcontrib><description>This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3059295</identifier><identifier>PMID: 33587696</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Coders ; Computational modeling ; cross-modal representation learning ; dual encoding ; Electronic mail ; Encoding ; Feature extraction ; hybrid space learning ; Linguistics ; Machine learning ; Queries ; Recurrent neural networks ; Retrieval ; Video ; Video retrieval ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4065-4080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</citedby><cites>FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</cites><orcidid>0000-0003-4883-1703 ; 0000-0003-0201-1638 ; 0000-0001-5244-3274 ; 0000-0002-0220-8310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33587696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Jianfeng</creatorcontrib><creatorcontrib>Li, Xirong</creatorcontrib><creatorcontrib>Xu, Chaoxi</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><title>Dual Encoding for Video Retrieval by Text</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .</description><subject>Algorithms</subject><subject>Coders</subject><subject>Computational modeling</subject><subject>cross-modal representation learning</subject><subject>dual encoding</subject><subject>Electronic mail</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>hybrid space learning</subject><subject>Linguistics</subject><subject>Machine learning</subject><subject>Queries</subject><subject>Recurrent neural networks</subject><subject>Retrieval</subject><subject>Video</subject><subject>Video retrieval</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AURQdRbK3-AQUJuNFF6pt5M0lmWWrVQkWR6nbIZF4kJU1qPsT-e1Nbu3D1Fvfcy-Mwds5hyDno2_nL6Gk6FCD4EEFpodUB63ON2keF-pD1gQfCjyIR9dhJXS8AuFSAx6yHqKIw0EGf3dy1ce5NiqR0WfHhpWXlvWeOSu-Vmiqjry60a29O380pO0rjvKaz3R2wt_vJfPzoz54fpuPRzE9Q8cZXgbUA0lIoQHJEC6HUCbgQQ86lk0DopBTaWudsKjAQ5MCSFLEM4hAdDtj1dndVlZ8t1Y1ZZnVCeR4XVLa1EVIDF1Jq0aFX_9BF2VZF950RQSQ01xDJjhJbKqnKuq4oNasqW8bV2nAwG5HmV6TZiDQ7kV3pcjfd2iW5feXPXAdcbIGMiPaxRiWVRvwBzlVz4w</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dong, Jianfeng</creator><creator>Li, Xirong</creator><creator>Xu, Chaoxi</creator><creator>Yang, Xun</creator><creator>Yang, Gang</creator><creator>Wang, Xun</creator><creator>Wang, Meng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4883-1703</orcidid><orcidid>https://orcid.org/0000-0003-0201-1638</orcidid><orcidid>https://orcid.org/0000-0001-5244-3274</orcidid><orcidid>https://orcid.org/0000-0002-0220-8310</orcidid></search><sort><creationdate>20220801</creationdate><title>Dual Encoding for Video Retrieval by Text</title><author>Dong, Jianfeng ; Li, Xirong ; Xu, Chaoxi ; Yang, Xun ; Yang, Gang ; Wang, Xun ; Wang, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-56bb004be7204133b0749c0d737114d40e3d4429bbddbf2362ed0be42a46a73d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Computational modeling</topic><topic>cross-modal representation learning</topic><topic>dual encoding</topic><topic>Electronic mail</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>hybrid space learning</topic><topic>Linguistics</topic><topic>Machine learning</topic><topic>Queries</topic><topic>Recurrent neural networks</topic><topic>Retrieval</topic><topic>Video</topic><topic>Video retrieval</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jianfeng</creatorcontrib><creatorcontrib>Li, Xirong</creatorcontrib><creatorcontrib>Xu, Chaoxi</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jianfeng</au><au>Li, Xirong</au><au>Xu, Chaoxi</au><au>Yang, Xun</au><au>Yang, Gang</au><au>Wang, Xun</au><au>Wang, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Encoding for Video Retrieval by Text</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>8</issue><spage>4065</spage><epage>4080</epage><pages>4065-4080</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper attacks the challenging problem of video retrieval by text. In such a retrieval paradigm, an end user searches for unlabeled videos by ad-hoc queries described exclusively in the form of a natural-language sentence, with no visual example provided. Given videos as sequences of frames and queries as sequences of words, an effective sequence-to-sequence cross-modal matching is crucial. To that end, the two modalities need to be first encoded into real-valued vectors and then projected into a common space. In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own. Our novelty is two-fold. First, different from prior art that resorts to a specific single-level encoder, the proposed network performs multi-level encoding that represents the rich content of both modalities in a coarse-to-fine fashion. Second, different from a conventional common space learning algorithm which is either concept based or latent space based, we introduce hybrid space learning which combines the high performance of the latent space and the good interpretability of the concept space. Dual encoding is conceptually simple, practically effective and end-to-end trained with hybrid space learning. Extensive experiments on four challenging video datasets show the viability of the new method. Code and data are available at https://github.com/danieljf24/hybrid_space .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33587696</pmid><doi>10.1109/TPAMI.2021.3059295</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4883-1703</orcidid><orcidid>https://orcid.org/0000-0003-0201-1638</orcidid><orcidid>https://orcid.org/0000-0001-5244-3274</orcidid><orcidid>https://orcid.org/0000-0002-0220-8310</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4065-4080
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_9354593
source IEEE Electronic Library (IEL)
subjects Algorithms
Coders
Computational modeling
cross-modal representation learning
dual encoding
Electronic mail
Encoding
Feature extraction
hybrid space learning
Linguistics
Machine learning
Queries
Recurrent neural networks
Retrieval
Video
Video retrieval
Visualization
title Dual Encoding for Video Retrieval by Text
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Encoding%20for%20Video%20Retrieval%20by%20Text&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Dong,%20Jianfeng&rft.date=2022-08-01&rft.volume=44&rft.issue=8&rft.spage=4065&rft.epage=4080&rft.pages=4065-4080&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3059295&rft_dat=%3Cproquest_RIE%3E2682919084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682919084&rft_id=info:pmid/33587696&rft_ieee_id=9354593&rfr_iscdi=true