l₀-l₁ Hybrid Total Variation Regularization and its Applications on Hyperspectral Image Mixed Noise Removal and Compressed Sensing

The total variation (TV) regularization has been widely used in various applications related to hyperspectral (HS) signal and image processing due to its potential in modeling the underlying smoothness of HS data. However, most existing TV norms usually tend to generate spatial oversmoothing or arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-09, Vol.59 (9), p.7695-7710
Hauptverfasser: Wang, Minghua, Wang, Qiang, Chanussot, Jocelyn, Hong, Danfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7710
container_issue 9
container_start_page 7695
container_title IEEE transactions on geoscience and remote sensing
container_volume 59
creator Wang, Minghua
Wang, Qiang
Chanussot, Jocelyn
Hong, Danfeng
description The total variation (TV) regularization has been widely used in various applications related to hyperspectral (HS) signal and image processing due to its potential in modeling the underlying smoothness of HS data. However, most existing TV norms usually tend to generate spatial oversmoothing or artifacts. To this end, we propose a novel l_{0} - l_{1} hybrid TV ( l_{0} - l_{1} HTV) regularization with the applications to HS mixed noise removal and compressed sensing (CS). More specifically, l_{0} - l_{1} HTV can be regarded as a globally and locally integrated TV regularizer, where the l_{0} gradient constraint is incorporate into the l_{1} spatial-spectral TV ( l_{1} -SSTV). l_{1} -SSTV is capable of exploiting the local structure information across both spatial and spectral domains, while the l_{0} gradient can promote a globally spectral-spatial smoothness by directly controlling the number of nonzero gradients of HS images. This efficient combination considers more comprehensive prior knowledge of HS images, yielding sharper edge preservation and resolving the above drawbacks of existing pure TV norms. More significantly, l_{0} - l_{1} HTV can be easily injected into HS-related processing models, and an effective algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the optimization problems. Extensive experiments conducted on several HS data sets substantiate the superiority and effectiveness of the proposed method in comparison with many state-of-the-art methods.
doi_str_mv 10.1109/TGRS.2021.3055516
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_9354456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354456</ieee_id><sourcerecordid>9354456</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-d851c7fa4bb377787657f232350f34988e16194dfdd3952d47898bba3453dacc3</originalsourceid><addsrcrecordid>eNotjEtOwzAARL0AiVI4AGLjC6T4G9vLKoK2UgGpLWwrJ3Yio_xkB0RYAQsOykkwlM2M5o1mALjAaIYxUle7xWY7I4jgGUWcc5wegQnCKk2IVOQEnIbwhBBmHIsJ-Kq_P9-TKB9wOebeGbjrBl3DR-2dHlzXwo2tnuuY3g5Rtwa6IcB539eu-GMBRr4ce-tDb4vBx_mq0ZWFt-7VGnjXuWDjTdO9xOZ3n3VN720IsdzaNri2OgPHpa6DPf_3KXi4ud5ly2R9v1hl83XiCMNDYiTHhSg1y3MqhJAi5aIklFCOSsqUlBanWDFTGkMVJ4YJqWSea8o4Nboo6BRcHn6dtXbfe9doP-4V5YzxlP4AC69hyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>l₀-l₁ Hybrid Total Variation Regularization and its Applications on Hyperspectral Image Mixed Noise Removal and Compressed Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Minghua ; Wang, Qiang ; Chanussot, Jocelyn ; Hong, Danfeng</creator><creatorcontrib>Wang, Minghua ; Wang, Qiang ; Chanussot, Jocelyn ; Hong, Danfeng</creatorcontrib><description><![CDATA[The total variation (TV) regularization has been widely used in various applications related to hyperspectral (HS) signal and image processing due to its potential in modeling the underlying smoothness of HS data. However, most existing TV norms usually tend to generate spatial oversmoothing or artifacts. To this end, we propose a novel <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> hybrid TV (<inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV) regularization with the applications to HS mixed noise removal and compressed sensing (CS). More specifically, <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV can be regarded as a globally and locally integrated TV regularizer, where the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> gradient constraint is incorporate into the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> spatial-spectral TV (<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-SSTV). <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-SSTV is capable of exploiting the local structure information across both spatial and spectral domains, while the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> gradient can promote a globally spectral-spatial smoothness by directly controlling the number of nonzero gradients of HS images. This efficient combination considers more comprehensive prior knowledge of HS images, yielding sharper edge preservation and resolving the above drawbacks of existing pure TV norms. More significantly, <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV can be easily injected into HS-related processing models, and an effective algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the optimization problems. Extensive experiments conducted on several HS data sets substantiate the superiority and effectiveness of the proposed method in comparison with many state-of-the-art methods.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>DOI: 10.1109/TGRS.2021.3055516</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₀ gradient ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₀-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₁ hybrid total variation (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₀-l1HTV) ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₁ spatial--spectral TV (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₁SSTV) ; alternating direction method of multipliers (ADMM) ; Compressed sensing ; compressed sensing (CS) ; hyperspectral image (HSI) denoising ; Image edge detection ; Image restoration ; Minimization ; Noise reduction ; Tensors]]></subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-09, Vol.59 (9), p.7695-7710</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9654-0268 ; 0000-0003-4817-2875 ; 0000-0001-5715-130X ; 0000-0002-3212-9584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Minghua</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Hong, Danfeng</creatorcontrib><title>l₀-l₁ Hybrid Total Variation Regularization and its Applications on Hyperspectral Image Mixed Noise Removal and Compressed Sensing</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[The total variation (TV) regularization has been widely used in various applications related to hyperspectral (HS) signal and image processing due to its potential in modeling the underlying smoothness of HS data. However, most existing TV norms usually tend to generate spatial oversmoothing or artifacts. To this end, we propose a novel <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> hybrid TV (<inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV) regularization with the applications to HS mixed noise removal and compressed sensing (CS). More specifically, <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV can be regarded as a globally and locally integrated TV regularizer, where the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> gradient constraint is incorporate into the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> spatial-spectral TV (<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-SSTV). <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-SSTV is capable of exploiting the local structure information across both spatial and spectral domains, while the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> gradient can promote a globally spectral-spatial smoothness by directly controlling the number of nonzero gradients of HS images. This efficient combination considers more comprehensive prior knowledge of HS images, yielding sharper edge preservation and resolving the above drawbacks of existing pure TV norms. More significantly, <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV can be easily injected into HS-related processing models, and an effective algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the optimization problems. Extensive experiments conducted on several HS data sets substantiate the superiority and effectiveness of the proposed method in comparison with many state-of-the-art methods.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₀ gradient</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₀-&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₁ hybrid total variation (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₀-l1HTV)</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₁ spatial--spectral TV (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₁SSTV)</subject><subject>alternating direction method of multipliers (ADMM)</subject><subject>Compressed sensing</subject><subject>compressed sensing (CS)</subject><subject>hyperspectral image (HSI) denoising</subject><subject>Image edge detection</subject><subject>Image restoration</subject><subject>Minimization</subject><subject>Noise reduction</subject><subject>Tensors</subject><issn>0196-2892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjEtOwzAARL0AiVI4AGLjC6T4G9vLKoK2UgGpLWwrJ3Yio_xkB0RYAQsOykkwlM2M5o1mALjAaIYxUle7xWY7I4jgGUWcc5wegQnCKk2IVOQEnIbwhBBmHIsJ-Kq_P9-TKB9wOebeGbjrBl3DR-2dHlzXwo2tnuuY3g5Rtwa6IcB539eu-GMBRr4ce-tDb4vBx_mq0ZWFt-7VGnjXuWDjTdO9xOZ3n3VN720IsdzaNri2OgPHpa6DPf_3KXi4ud5ly2R9v1hl83XiCMNDYiTHhSg1y3MqhJAi5aIklFCOSsqUlBanWDFTGkMVJ4YJqWSea8o4Nboo6BRcHn6dtXbfe9doP-4V5YzxlP4AC69hyQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Wang, Minghua</creator><creator>Wang, Qiang</creator><creator>Chanussot, Jocelyn</creator><creator>Hong, Danfeng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-9654-0268</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0001-5715-130X</orcidid><orcidid>https://orcid.org/0000-0002-3212-9584</orcidid></search><sort><creationdate>202109</creationdate><title>l₀-l₁ Hybrid Total Variation Regularization and its Applications on Hyperspectral Image Mixed Noise Removal and Compressed Sensing</title><author>Wang, Minghua ; Wang, Qiang ; Chanussot, Jocelyn ; Hong, Danfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-d851c7fa4bb377787657f232350f34988e16194dfdd3952d47898bba3453dacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₀ gradient</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₀-&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₁ hybrid total variation (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₀-l1HTV)</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₁ spatial--spectral TV (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ₁SSTV)</topic><topic>alternating direction method of multipliers (ADMM)</topic><topic>Compressed sensing</topic><topic>compressed sensing (CS)</topic><topic>hyperspectral image (HSI) denoising</topic><topic>Image edge detection</topic><topic>Image restoration</topic><topic>Minimization</topic><topic>Noise reduction</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Minghua</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Chanussot, Jocelyn</creatorcontrib><creatorcontrib>Hong, Danfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Minghua</au><au>Wang, Qiang</au><au>Chanussot, Jocelyn</au><au>Hong, Danfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>l₀-l₁ Hybrid Total Variation Regularization and its Applications on Hyperspectral Image Mixed Noise Removal and Compressed Sensing</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-09</date><risdate>2021</risdate><volume>59</volume><issue>9</issue><spage>7695</spage><epage>7710</epage><pages>7695-7710</pages><issn>0196-2892</issn><coden>IGRSD2</coden><abstract><![CDATA[The total variation (TV) regularization has been widely used in various applications related to hyperspectral (HS) signal and image processing due to its potential in modeling the underlying smoothness of HS data. However, most existing TV norms usually tend to generate spatial oversmoothing or artifacts. To this end, we propose a novel <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> hybrid TV (<inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV) regularization with the applications to HS mixed noise removal and compressed sensing (CS). More specifically, <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV can be regarded as a globally and locally integrated TV regularizer, where the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> gradient constraint is incorporate into the <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> spatial-spectral TV (<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-SSTV). <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>-SSTV is capable of exploiting the local structure information across both spatial and spectral domains, while the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula> gradient can promote a globally spectral-spatial smoothness by directly controlling the number of nonzero gradients of HS images. This efficient combination considers more comprehensive prior knowledge of HS images, yielding sharper edge preservation and resolving the above drawbacks of existing pure TV norms. More significantly, <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula>HTV can be easily injected into HS-related processing models, and an effective algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the optimization problems. Extensive experiments conducted on several HS data sets substantiate the superiority and effectiveness of the proposed method in comparison with many state-of-the-art methods.]]></abstract><pub>IEEE</pub><doi>10.1109/TGRS.2021.3055516</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9654-0268</orcidid><orcidid>https://orcid.org/0000-0003-4817-2875</orcidid><orcidid>https://orcid.org/0000-0001-5715-130X</orcidid><orcidid>https://orcid.org/0000-0002-3212-9584</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2021-09, Vol.59 (9), p.7695-7710
issn 0196-2892
language eng
recordid cdi_ieee_primary_9354456
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₀ gradient
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₀-<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₁ hybrid total variation (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₀-l1HTV)
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₁ spatial--spectral TV (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ₁SSTV)
alternating direction method of multipliers (ADMM)
Compressed sensing
compressed sensing (CS)
hyperspectral image (HSI) denoising
Image edge detection
Image restoration
Minimization
Noise reduction
Tensors
title l₀-l₁ Hybrid Total Variation Regularization and its Applications on Hyperspectral Image Mixed Noise Removal and Compressed Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=l%E2%82%80-l%E2%82%81%20Hybrid%20Total%20Variation%20Regularization%20and%20its%20Applications%20on%20Hyperspectral%20Image%20Mixed%20Noise%20Removal%20and%20Compressed%20Sensing&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Minghua&rft.date=2021-09&rft.volume=59&rft.issue=9&rft.spage=7695&rft.epage=7710&rft.pages=7695-7710&rft.issn=0196-2892&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3055516&rft_dat=%3Cieee_RIE%3E9354456%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9354456&rfr_iscdi=true