Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System

Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-04, Vol.21 (8), p.9890-9899
Hauptverfasser: Benoit, Evan, Mismash, Jack, Kingston, Samuel R., Edun, Ayobami S., Ellis, Hunter, LaFlamme, Cody, Scarpulla, Michael A., Harley, Joel B., Furse, Cynthia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9899
container_issue 8
container_start_page 9890
container_title IEEE sensors journal
container_volume 21
creator Benoit, Evan
Mismash, Jack
Kingston, Samuel R.
Edun, Ayobami S.
Ellis, Hunter
LaFlamme, Cody
Scarpulla, Michael A.
Harley, Joel B.
Furse, Cynthia M.
description Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.
doi_str_mv 10.1109/JSEN.2021.3059412
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9354164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354164</ieee_id><sourcerecordid>2503501196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhSdGExH9AcZNo-vB3mmn0y6N4iv4BKK7ppRWhkCLbdHw750JxNW5i--c3HxZdgq4B4DF5eOw_9wrcAE9gktBodjLOlCWPIeK8v32JjinpPo8zI5inGMMoiqrTjZ-WyuXarup3RdKM4M-ajf1v8hbNHbahKRqlzbI-oCGw9HNO3oyKq6DWRqXYksp9Drzyf_4RYNqNNzEZJbH2YFVi2hOdtnNxrf90fV9Pni5e7i-GuSaMJJyAwqYIJRzZpmdasYUFBWujFBsQjQv9KSyFEPJKWOWMzopGFZCFKTJKdGkm51vd31MtYy6TkbPtHfO6CSBU84Eb6CLLbQK_nttYpJzvw6u-UsWJSYlBhCsoWBL6eBjDMbKVaiXKmwkYNkqlq1i2SqWO8VN52zbqY0x_7wgJQVGyR_C33Ya</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503501196</pqid></control><display><type>article</type><title>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</title><source>IEEE Electronic Library (IEL)</source><creator>Benoit, Evan ; Mismash, Jack ; Kingston, Samuel R. ; Edun, Ayobami S. ; Ellis, Hunter ; LaFlamme, Cody ; Scarpulla, Michael A. ; Harley, Joel B. ; Furse, Cynthia M.</creator><creatorcontrib>Benoit, Evan ; Mismash, Jack ; Kingston, Samuel R. ; Edun, Ayobami S. ; Ellis, Hunter ; LaFlamme, Cody ; Scarpulla, Michael A. ; Harley, Joel B. ; Furse, Cynthia M. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3059412</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit faults ; complex impedance ; Electrical faults ; Engineering ; Fault detection ; Impedance ; Impedance measurement ; Instruments &amp; Instrumentation ; photovoltaic (PV) ; Photovoltaic cells ; Physics ; reflectometry ; Spread spectrum ; Spread spectrum time domain reflectometry (SSTDR) ; Time measurement ; Time-domain analysis ; Transmission line measurements ; Uncertainty ; Urban areas ; Variability</subject><ispartof>IEEE sensors journal, 2021-04, Vol.21 (8), p.9890-9899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</citedby><cites>FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</cites><orcidid>0000-0002-6084-6839 ; 0000-0002-7139-7231 ; 0000-0003-2309-2051 ; 0000-0003-2758-7262 ; 0000-0002-5756-0418 ; 0000-0001-8920-1498 ; 0000-0002-8764-5252 ; 0000000260846839 ; 0000000271397231 ; 0000000323092051 ; 0000000287645252 ; 0000000189201498 ; 0000000257560418 ; 0000000327587262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1848698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Mismash, Jack</creatorcontrib><creatorcontrib>Kingston, Samuel R.</creatorcontrib><creatorcontrib>Edun, Ayobami S.</creatorcontrib><creatorcontrib>Ellis, Hunter</creatorcontrib><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.</description><subject>Circuit faults</subject><subject>complex impedance</subject><subject>Electrical faults</subject><subject>Engineering</subject><subject>Fault detection</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Instruments &amp; Instrumentation</subject><subject>photovoltaic (PV)</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>reflectometry</subject><subject>Spread spectrum</subject><subject>Spread spectrum time domain reflectometry (SSTDR)</subject><subject>Time measurement</subject><subject>Time-domain analysis</subject><subject>Transmission line measurements</subject><subject>Uncertainty</subject><subject>Urban areas</subject><subject>Variability</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhSdGExH9AcZNo-vB3mmn0y6N4iv4BKK7ppRWhkCLbdHw750JxNW5i--c3HxZdgq4B4DF5eOw_9wrcAE9gktBodjLOlCWPIeK8v32JjinpPo8zI5inGMMoiqrTjZ-WyuXarup3RdKM4M-ajf1v8hbNHbahKRqlzbI-oCGw9HNO3oyKq6DWRqXYksp9Drzyf_4RYNqNNzEZJbH2YFVi2hOdtnNxrf90fV9Pni5e7i-GuSaMJJyAwqYIJRzZpmdasYUFBWujFBsQjQv9KSyFEPJKWOWMzopGFZCFKTJKdGkm51vd31MtYy6TkbPtHfO6CSBU84Eb6CLLbQK_nttYpJzvw6u-UsWJSYlBhCsoWBL6eBjDMbKVaiXKmwkYNkqlq1i2SqWO8VN52zbqY0x_7wgJQVGyR_C33Ya</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Benoit, Evan</creator><creator>Mismash, Jack</creator><creator>Kingston, Samuel R.</creator><creator>Edun, Ayobami S.</creator><creator>Ellis, Hunter</creator><creator>LaFlamme, Cody</creator><creator>Scarpulla, Michael A.</creator><creator>Harley, Joel B.</creator><creator>Furse, Cynthia M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0002-5756-0418</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000257560418</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid></search><sort><creationdate>20210415</creationdate><title>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</title><author>Benoit, Evan ; Mismash, Jack ; Kingston, Samuel R. ; Edun, Ayobami S. ; Ellis, Hunter ; LaFlamme, Cody ; Scarpulla, Michael A. ; Harley, Joel B. ; Furse, Cynthia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuit faults</topic><topic>complex impedance</topic><topic>Electrical faults</topic><topic>Engineering</topic><topic>Fault detection</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Instruments &amp; Instrumentation</topic><topic>photovoltaic (PV)</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>reflectometry</topic><topic>Spread spectrum</topic><topic>Spread spectrum time domain reflectometry (SSTDR)</topic><topic>Time measurement</topic><topic>Time-domain analysis</topic><topic>Transmission line measurements</topic><topic>Uncertainty</topic><topic>Urban areas</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Mismash, Jack</creatorcontrib><creatorcontrib>Kingston, Samuel R.</creatorcontrib><creatorcontrib>Edun, Ayobami S.</creatorcontrib><creatorcontrib>Ellis, Hunter</creatorcontrib><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benoit, Evan</au><au>Mismash, Jack</au><au>Kingston, Samuel R.</au><au>Edun, Ayobami S.</au><au>Ellis, Hunter</au><au>LaFlamme, Cody</au><au>Scarpulla, Michael A.</au><au>Harley, Joel B.</au><au>Furse, Cynthia M.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>9890</spage><epage>9899</epage><pages>9890-9899</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3059412</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0002-5756-0418</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000257560418</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-04, Vol.21 (8), p.9890-9899
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9354164
source IEEE Electronic Library (IEL)
subjects Circuit faults
complex impedance
Electrical faults
Engineering
Fault detection
Impedance
Impedance measurement
Instruments & Instrumentation
photovoltaic (PV)
Photovoltaic cells
Physics
reflectometry
Spread spectrum
Spread spectrum time domain reflectometry (SSTDR)
Time measurement
Time-domain analysis
Transmission line measurements
Uncertainty
Urban areas
Variability
title Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Window%20of%20Uncertainty%20for%20SSTDR%20Measurements%20of%20a%20Photovoltaic%20System&rft.jtitle=IEEE%20sensors%20journal&rft.au=Benoit,%20Evan&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2021-04-15&rft.volume=21&rft.issue=8&rft.spage=9890&rft.epage=9899&rft.pages=9890-9899&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3059412&rft_dat=%3Cproquest_RIE%3E2503501196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503501196&rft_id=info:pmid/&rft_ieee_id=9354164&rfr_iscdi=true