Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System
Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. Th...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-04, Vol.21 (8), p.9890-9899 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9899 |
---|---|
container_issue | 8 |
container_start_page | 9890 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Benoit, Evan Mismash, Jack Kingston, Samuel R. Edun, Ayobami S. Ellis, Hunter LaFlamme, Cody Scarpulla, Michael A. Harley, Joel B. Furse, Cynthia M. |
description | Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults. |
doi_str_mv | 10.1109/JSEN.2021.3059412 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9354164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354164</ieee_id><sourcerecordid>2503501196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhSdGExH9AcZNo-vB3mmn0y6N4iv4BKK7ppRWhkCLbdHw750JxNW5i--c3HxZdgq4B4DF5eOw_9wrcAE9gktBodjLOlCWPIeK8v32JjinpPo8zI5inGMMoiqrTjZ-WyuXarup3RdKM4M-ajf1v8hbNHbahKRqlzbI-oCGw9HNO3oyKq6DWRqXYksp9Drzyf_4RYNqNNzEZJbH2YFVi2hOdtnNxrf90fV9Pni5e7i-GuSaMJJyAwqYIJRzZpmdasYUFBWujFBsQjQv9KSyFEPJKWOWMzopGFZCFKTJKdGkm51vd31MtYy6TkbPtHfO6CSBU84Eb6CLLbQK_nttYpJzvw6u-UsWJSYlBhCsoWBL6eBjDMbKVaiXKmwkYNkqlq1i2SqWO8VN52zbqY0x_7wgJQVGyR_C33Ya</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503501196</pqid></control><display><type>article</type><title>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</title><source>IEEE Electronic Library (IEL)</source><creator>Benoit, Evan ; Mismash, Jack ; Kingston, Samuel R. ; Edun, Ayobami S. ; Ellis, Hunter ; LaFlamme, Cody ; Scarpulla, Michael A. ; Harley, Joel B. ; Furse, Cynthia M.</creator><creatorcontrib>Benoit, Evan ; Mismash, Jack ; Kingston, Samuel R. ; Edun, Ayobami S. ; Ellis, Hunter ; LaFlamme, Cody ; Scarpulla, Michael A. ; Harley, Joel B. ; Furse, Cynthia M. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3059412</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit faults ; complex impedance ; Electrical faults ; Engineering ; Fault detection ; Impedance ; Impedance measurement ; Instruments & Instrumentation ; photovoltaic (PV) ; Photovoltaic cells ; Physics ; reflectometry ; Spread spectrum ; Spread spectrum time domain reflectometry (SSTDR) ; Time measurement ; Time-domain analysis ; Transmission line measurements ; Uncertainty ; Urban areas ; Variability</subject><ispartof>IEEE sensors journal, 2021-04, Vol.21 (8), p.9890-9899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</citedby><cites>FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</cites><orcidid>0000-0002-6084-6839 ; 0000-0002-7139-7231 ; 0000-0003-2309-2051 ; 0000-0003-2758-7262 ; 0000-0002-5756-0418 ; 0000-0001-8920-1498 ; 0000-0002-8764-5252 ; 0000000260846839 ; 0000000271397231 ; 0000000323092051 ; 0000000287645252 ; 0000000189201498 ; 0000000257560418 ; 0000000327587262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1848698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Mismash, Jack</creatorcontrib><creatorcontrib>Kingston, Samuel R.</creatorcontrib><creatorcontrib>Edun, Ayobami S.</creatorcontrib><creatorcontrib>Ellis, Hunter</creatorcontrib><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.</description><subject>Circuit faults</subject><subject>complex impedance</subject><subject>Electrical faults</subject><subject>Engineering</subject><subject>Fault detection</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Instruments & Instrumentation</subject><subject>photovoltaic (PV)</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>reflectometry</subject><subject>Spread spectrum</subject><subject>Spread spectrum time domain reflectometry (SSTDR)</subject><subject>Time measurement</subject><subject>Time-domain analysis</subject><subject>Transmission line measurements</subject><subject>Uncertainty</subject><subject>Urban areas</subject><subject>Variability</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhSdGExH9AcZNo-vB3mmn0y6N4iv4BKK7ppRWhkCLbdHw750JxNW5i--c3HxZdgq4B4DF5eOw_9wrcAE9gktBodjLOlCWPIeK8v32JjinpPo8zI5inGMMoiqrTjZ-WyuXarup3RdKM4M-ajf1v8hbNHbahKRqlzbI-oCGw9HNO3oyKq6DWRqXYksp9Drzyf_4RYNqNNzEZJbH2YFVi2hOdtnNxrf90fV9Pni5e7i-GuSaMJJyAwqYIJRzZpmdasYUFBWujFBsQjQv9KSyFEPJKWOWMzopGFZCFKTJKdGkm51vd31MtYy6TkbPtHfO6CSBU84Eb6CLLbQK_nttYpJzvw6u-UsWJSYlBhCsoWBL6eBjDMbKVaiXKmwkYNkqlq1i2SqWO8VN52zbqY0x_7wgJQVGyR_C33Ya</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Benoit, Evan</creator><creator>Mismash, Jack</creator><creator>Kingston, Samuel R.</creator><creator>Edun, Ayobami S.</creator><creator>Ellis, Hunter</creator><creator>LaFlamme, Cody</creator><creator>Scarpulla, Michael A.</creator><creator>Harley, Joel B.</creator><creator>Furse, Cynthia M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0002-5756-0418</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000257560418</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid></search><sort><creationdate>20210415</creationdate><title>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</title><author>Benoit, Evan ; Mismash, Jack ; Kingston, Samuel R. ; Edun, Ayobami S. ; Ellis, Hunter ; LaFlamme, Cody ; Scarpulla, Michael A. ; Harley, Joel B. ; Furse, Cynthia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e1a16934886f6fdc66a12707e9a6b3c82cb7f40158466f864b260a9923260d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuit faults</topic><topic>complex impedance</topic><topic>Electrical faults</topic><topic>Engineering</topic><topic>Fault detection</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Instruments & Instrumentation</topic><topic>photovoltaic (PV)</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>reflectometry</topic><topic>Spread spectrum</topic><topic>Spread spectrum time domain reflectometry (SSTDR)</topic><topic>Time measurement</topic><topic>Time-domain analysis</topic><topic>Transmission line measurements</topic><topic>Uncertainty</topic><topic>Urban areas</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benoit, Evan</creatorcontrib><creatorcontrib>Mismash, Jack</creatorcontrib><creatorcontrib>Kingston, Samuel R.</creatorcontrib><creatorcontrib>Edun, Ayobami S.</creatorcontrib><creatorcontrib>Ellis, Hunter</creatorcontrib><creatorcontrib>LaFlamme, Cody</creatorcontrib><creatorcontrib>Scarpulla, Michael A.</creatorcontrib><creatorcontrib>Harley, Joel B.</creatorcontrib><creatorcontrib>Furse, Cynthia M.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benoit, Evan</au><au>Mismash, Jack</au><au>Kingston, Samuel R.</au><au>Edun, Ayobami S.</au><au>Ellis, Hunter</au><au>LaFlamme, Cody</au><au>Scarpulla, Michael A.</au><au>Harley, Joel B.</au><au>Furse, Cynthia M.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>9890</spage><epage>9899</epage><pages>9890-9899</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Spread spectrum time domain reflectometry (SSTDR) is a non-intrusive method for electrical fault detection and localization that enables continuous monitoring of live electrical systems. Electrical faults create changes in impedance that create subsequent changes in the SSTDR reflection response. These changes in reflection response can be detected only if the changes are outside the window of uncertainty of the SSTDR measurement. In this paper, we establish a method of determining this window of uncertainty and the associated minimum-detectable change in impedance for SSTDR measurements. We demonstrate this for a photovoltaic (PV) systems, although the methods could be similarly applied to other applications. We assess the variability in SSTDR measurements caused by changes in the PV system that are representative of normal maintenance actions such as disconnecting/reconnecting a connector and completely breaking-down/setting-up the entire system. We evaluate how this variability translates to a minimum-detectable change in impedance and how that relates to common faults in PV systems (arc and ground faults, shading, damaged cells, and aging). We also describe methods of increasing SSTDR fidelity to accurately extract minor changes in impedance and therefore, detect small-magnitude electrical faults.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3059412</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6084-6839</orcidid><orcidid>https://orcid.org/0000-0002-7139-7231</orcidid><orcidid>https://orcid.org/0000-0003-2309-2051</orcidid><orcidid>https://orcid.org/0000-0003-2758-7262</orcidid><orcidid>https://orcid.org/0000-0002-5756-0418</orcidid><orcidid>https://orcid.org/0000-0001-8920-1498</orcidid><orcidid>https://orcid.org/0000-0002-8764-5252</orcidid><orcidid>https://orcid.org/0000000260846839</orcidid><orcidid>https://orcid.org/0000000271397231</orcidid><orcidid>https://orcid.org/0000000323092051</orcidid><orcidid>https://orcid.org/0000000287645252</orcidid><orcidid>https://orcid.org/0000000189201498</orcidid><orcidid>https://orcid.org/0000000257560418</orcidid><orcidid>https://orcid.org/0000000327587262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-04, Vol.21 (8), p.9890-9899 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9354164 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit faults complex impedance Electrical faults Engineering Fault detection Impedance Impedance measurement Instruments & Instrumentation photovoltaic (PV) Photovoltaic cells Physics reflectometry Spread spectrum Spread spectrum time domain reflectometry (SSTDR) Time measurement Time-domain analysis Transmission line measurements Uncertainty Urban areas Variability |
title | Quantifying the Window of Uncertainty for SSTDR Measurements of a Photovoltaic System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Window%20of%20Uncertainty%20for%20SSTDR%20Measurements%20of%20a%20Photovoltaic%20System&rft.jtitle=IEEE%20sensors%20journal&rft.au=Benoit,%20Evan&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2021-04-15&rft.volume=21&rft.issue=8&rft.spage=9890&rft.epage=9899&rft.pages=9890-9899&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3059412&rft_dat=%3Cproquest_RIE%3E2503501196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503501196&rft_id=info:pmid/&rft_ieee_id=9354164&rfr_iscdi=true |